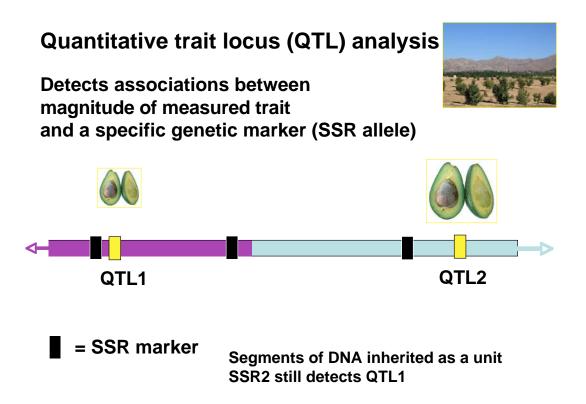
Linking Candidate Genes to Biochemical Phenotypes in Avocado


July 8, 2008

- I. Goal of project: to implement a program of marker-assisted selection (MAS) for nutritional traits in avocado
- II. Funded jointly by CAC and UC Discovery Program: three-year project was initially funded by UC Discovery on February 1, 2008
- III. Elements of project
 - A. Measuring nutritional phenotypes
 - B. Determining the heritability of nutritional phenotypes Gwen progeny population
 - C. Cloning genes related to nutritional metabolism
 - D. Identifying SNPs in candidate genes
 - E. Implementing marker-assisted selection on Gwen progeny population
 - F. Other related work

Rationale and Progress

Research suggests that consumption of avocado has a beneficial effect on human health by virtue of an array of antioxidants, vitamins, lutein, and the cholesterol-lowering and anticarcinogenic properties of β -sitosterol. Improvements in nutrition are "**value added**" traits that can be patented and sold at a premium. The development of new value added cultivars is important for the success of the California avocado industry.

- Measure these and related compounds in avocado fruit using thin layer chromatography (TLC) – *nutritional phenotype* – **initial validation of methods** in progress
- Determine the magnitude of genetic control of variation among trees in these compounds
 - Quantitative genetic analyses of Gwen progeny population Methods
 validated and populations in place
 - Initial focus on Gwen x Fuerte progeny
- Clone genes in biosynthetic pathways that determine these compounds
 - o Construct cDNA library Done
 - Validate cDNA library In process
 - Recover genes of interest (candidate genes) from cDNA library Will be the focus over the next six months
 - Identify SNPs in candidate genes Will commence in year 2.
- Employ SNPs for marker assisted selection (MAS) within Gwen progeny population Will initiate process at end of year 3.
- **Personnel changes** Vanessa Ashworth has taken a year's leave to accompany her husband on a sabbatical in Germany. Dr. Livia Tommasini joined the project as a post-doctoral scholar in June 2008 and Dr. Carlos Calderon is expected to join the project as a post-doctoral scholar in late August 2008.

Table 1. Avocado genes to be sequenced. Sequences availablein GenBank (non-chloroplast) as of late 2006 are in boldface

Biochemical Pathway or Gene Function Category	Enzyme or Gene
ABA Biosynthesis Pathways	 9-cis-epoxycarotenoid dioxygenase (NCED) Carotenoid cleavage dioxygenase (CCD)
Amino Acid Biosynthesis	3. Arginine decarboxylase
Pathways	4. Serine/threonine kinase
Anthocyanin Biosynthesis &	5. Anthocyanin synthase
Phenylpropanoid Pathways	6. Chalcone isomerase
	7. Chalcone synthase (CHS)
	8. Dihydroflavonol reductase
	9. Flavonol 3-hydroxylase (F3H)
	10. Flavone synthase
	11. Flavonol synthase
	12. Phenylalanine Ammonia Lyase (PAL)
Carotenoid Pathway	13. ζ-carotene desaturase
	14. β -carotene hydroxylase
	15. Lycopene β-cyclase
	16. Phytoene desaturase
	17. Phytoene synthase
Cell Wall Hydrolyzing	18. Cellulase
Enzymes	19. Endochitinase
	20. Polygalacturonase
Fatty Acid Synthesis	21. Fatty acid desaturase
	22. Fatty acid elongase
	23. Lipoxygenase (LOX)

	24. Stearoyl-acyl-carrier-protein				
Fruit Ripening Genes	25. 1-aminocyclopropane-1-carboxylate				
	synthase (ACS)				
	26. Ethylene response sensor (ERS)				
	27. Ripening-related protein (pAVOe3) ACC				
	oxidase ethylene forming enzyme				
Isoprenoid & β -sitosterol	28. C-14 reductase				
Biosynthesis Pathways	29. C-28 methyltransferase				
	30. C-8,7 sterol isomerase				
	31. Delta-7-sterol-C5 desaturase				
	32. Farnesyl pyrophosphate synthase				
	33. Geranyl diphosphate synthase				
	34. Sterol C-24 reductase				
	35. Sterol delta-7 reductase				
Sugar Synthesis or Metabolism	36. Beta-D-galactosidase (converts glucose to				
	galactose)				
	37. Fructose-bisphosphate aldolase				
Vitamin C	38. GDP-mannose pyrophosphorylase				
	39. GDP-mannose-3,5-epimerase				
	40. L-galactono-1,4-lactone dehydrogenase				
	41. L-galactose dehydrogenase				
	42. Mannose-6-phosphate isomerase				
	43. Phosphoglucose isomerase				
	44. Phosphomannomutase				
Vitamin E	45. Gamma-tocopherol methyltransferease				
	46. Homogentisate geranylgeranyl transferase				
	(HGGT)				
	47. Homogentisic phytyltransferase (HPT)				
	48. Tocopherol cyclase				

Miscellaneous Genes	49. Cytochrome P-450		
	50. Glutathione S-transferase		
	51. Metallothionein-like protein		
	52. Mitogen activated protein kinase		
	(MAP kinase)		
	53. Putative seed imbibition protein		

Quantitative genetics

- Progeny of 'Gwen' tree grafted onto 'Duke 7 'rootstock in 1999-2000
 - o 204 genotypes, each has four replicates
 - o Two locations (Irvine, Riverside)
 - o Randomized block design
 - o Planted in 2001
- Initial quantitative genetic analyses on growth rate and related traits (Chen et al., 2007)

	Height	Canopy Diameter	Stem Girth	Bloom Abundance	Fruit Precocity
Broad Sense Heritability	34.31%	29.7%	28.45%	32.3%	23.44%

Table 2. Growth rate traits

Table 3. Mean effect of different pollen donors

	Height (cm/mo)	Canopy Diameter (cm/mo)	T r u n k Diameter (cm/mo)	Flower Abundance	Fruit Setting
Bacon	5.931(A,B	6.045(B)	0.226(A	1.965(A	1.410(B)
Fuerte (5.002(C	6.482(A	0.213(A (1.418(C)	1.385(B)
Zutano	5.774(B	5.241(C)	0.197(B)	1.846(A	1.614(A
Mixed dono	6.289(A	6.484(A	0.223(A	≥1.604(B)	1.446(B)

 Table 4. Correlation among traits

	Height		Stem Girth	Flowe Abundance	Fruit Setting
Height	1	0.681	0.661	0.096	0.524
Canopy diameter		1	0.66478	0.08945	0.488
St em Girth			1	0.081	0.411
Flower Abundance				1	0.179
Fruit Precocity					1