# Troubleshooting Drip/Micro For Avocados

Stuart Styles itrc.org

# SUMMARY

- 1. Irrigation Performance Assessment
- 2. Preventative Maintenance for Drip
- 3. Water Quality/Salinity Issues
- 4. Fertigation

#### **Uniformity of the Irrigation System**

How evenly is water applied to individual plants throughout the field?





#### **Uniformity of the Irrigation System**

By the way – where do you

- Put soil moisture sensors?
- Measure fertility/take leaf samples?





# ET/Weather Stations

- Need at least one full station
- Need additional precipitation and temperature stations
- Current Companies (not complete):

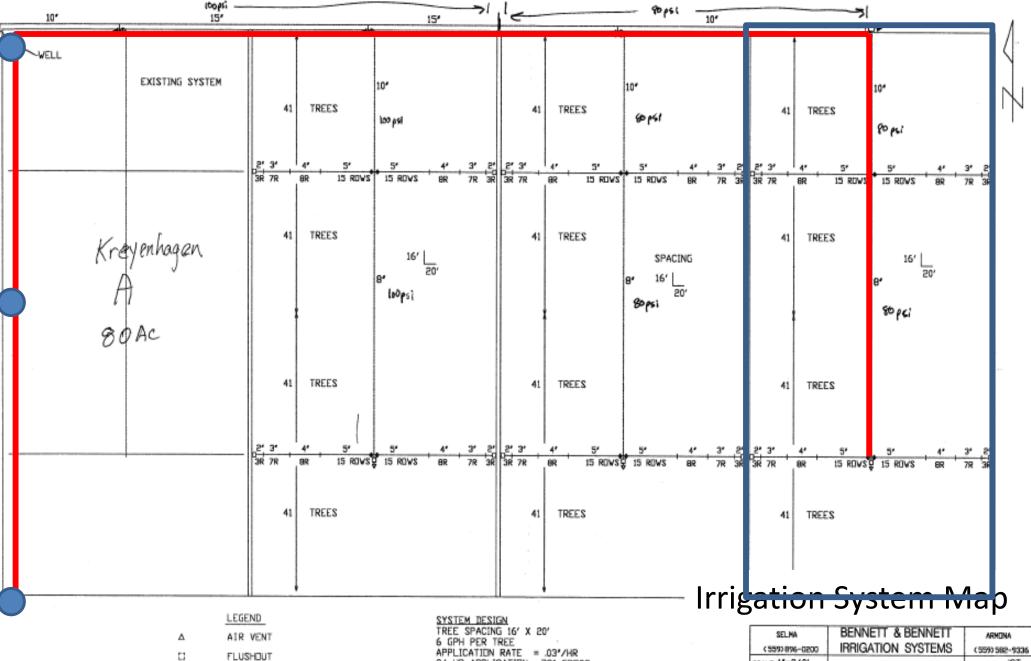
Climate Minder: <u>www.climateminder.com</u>

Ranch Systems: <a href="http://www.ranchsystems.com/ssite/index.shtml">http://www.ranchsystems.com/ssite/index.shtml</a>

PureSense: <a href="http://www.puresense.com/">http://www.puresense.com/</a> (Now, owned by Jain)

GroPoint: <a href="http://www.esica.com/products">http://www.esica.com/products</a> gropoint wireless.php

Hortau: <a href="http://www.hortau.com/en/home/">http://www.hortau.com/en/home/</a>


Adcon: <a href="http://www.mccrometer.com/products/product-mccrometer.com/products/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-mccrometer.com/product-



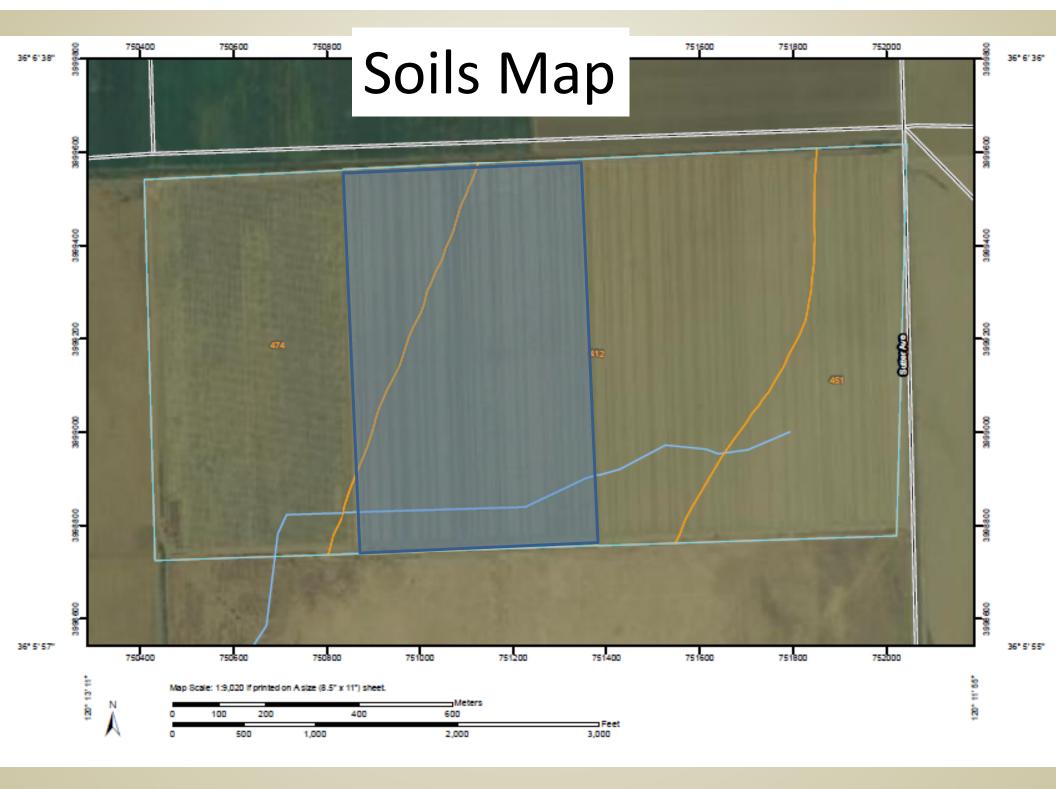
# Irrigation System Evaluations Example

Nichols Farms

Johnny Starling/Joe Perez



24 HR APPLICATION= .72" GROSS 80 ACRE WATER REQUIREMENT = 1138 GPM C. A. AIR VENT


PRESSURE REQUIRED = 66 PSI CONTROL VALVE

3/8 mile 100 psi 154 BLOCK VALVE TUBING DIRECTION 44 mta 100 psi 8"

| SELMA          | BENNETT & BENNETT      | ARMONA         |
|----------------|------------------------|----------------|
| (559) 896-0200 | IRRIGATION SYSTEMS     | (559) 582-9336 |
| SCALE 1'=340'  | DRIP IRRIGATION SYSTEM | DRAWN BY JST   |
| DATE 12/03     | DRIP IRRIGHTION STSTEM | DRAWING # 3038 |

#### KREYENHAGEN DEVELOPMENT

REPRODUCTION PUBLICATION, OR USE OF THESE PLANS BY ANY METHOD, IN WHOLE OR PART, WITHOUT THE EXPRESS CONSENT OF BENNETT & BENNETT IS PROHIBITED. VISUAL CONTACT WITH THESE PLANS AND SPECIFICATIONS SHALL CONSTITUTE PRIMA-FACIE EMDENCIL OF THE ACCEPTANCE OF THESE RESTRICTIONS



#### PC Fmitter Fvaluated

#### PC DRIPPER

ON-LINE PRESSURE-COMPENSATING. CONTINUOUSLY SELF-CLEANING DRIPPER

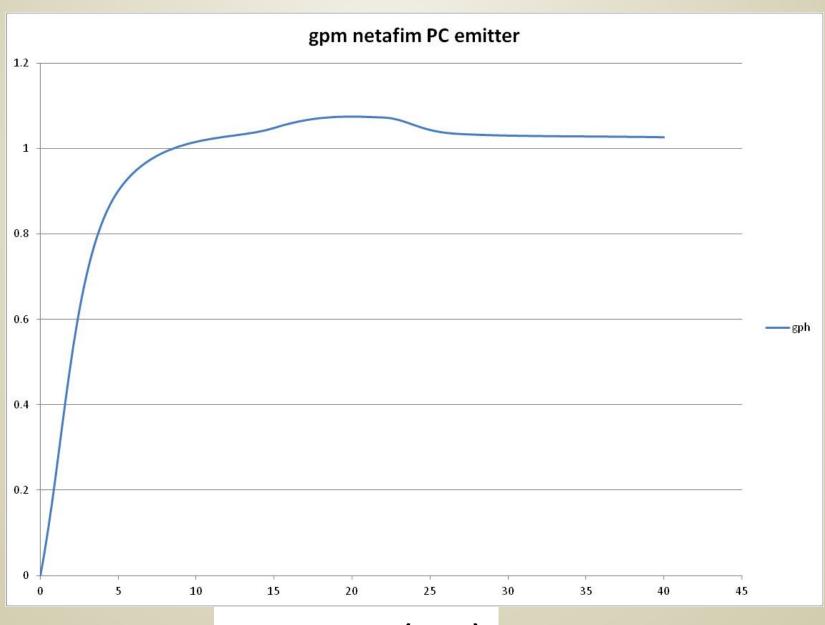


#### TECHNICAL INFORMATION

Recommended filtration: 130 micron / 120 mesh.

Elitration method Wherever sand

When sand/sil Minimum pressure 7psi


- To be "inserted
- Injected dripper, very low CV.
   UV resistant. Resistant to standard nutrients used in agricultural.
- PC on-line drippers meet ISO 9261 Standards with production certified by the Israel Standards Institute (SII).

#### DRIPPERS TECHNICAL DATA

| PL ary | bbeis         |                                    |                                                         |                             |               |                |                    |                   |
|--------|---------------|------------------------------------|---------------------------------------------------------|-----------------------------|---------------|----------------|--------------------|-------------------|
|        | VRATS<br>(AL) | WORKING PRESSURE<br>RANGE<br>(BAR) | WATER PASSAGES DIMEMSIONS<br>WIGTH-DEPTH-LENGTH<br>(MM) | FILTRATION<br>AREA<br>(MMP) | COMSTANT<br>K | EXPONENTS<br>X | BASE CODE<br>COLOR | CAP COLGR<br>CODE |
| 2      | .0            | 0.5 - 4.0                          | 1.17 x 1.07 x 61                                        | 2.0                         | 2.0           | 0              | Red                | Black             |
| - 4    | LO V          | 0.5 - 4.0                          | 1.32 x 1.40 x 60                                        | 2.0                         | 4.0           | 0              | Black              | Black             |
| - 8    | 3.5           | 0.5 - 4.0                          | 1.90 x 1.60 x 17                                        | 2.0                         | 8.5           | 0              | Green              | Black             |

"Within working pressure range

## PC Emitter Evaluated



Pressure (PSI)

## Results Year 1

0.79

#### **DRIP/MICRO EVALUATION: RESULTS**

(Low Quarter Infiltrated / Average Infiltrated)

DISTRIBUTION UNIFORMITY PROBLEMS PERCENT OF TOTAL NON-UNIFORMITY DUE TO EACH PROBLEM:

| Pressure differences | 53% |
|----------------------|-----|
|----------------------|-----|

| Difference between manifold inlet pressures: | 1 psi |
|----------------------------------------------|-------|
|                                              |       |

Difference between hose inlet pressures: 2 psi

Maximum pressure difference within a hose: 13 psi

## Results – Year 2

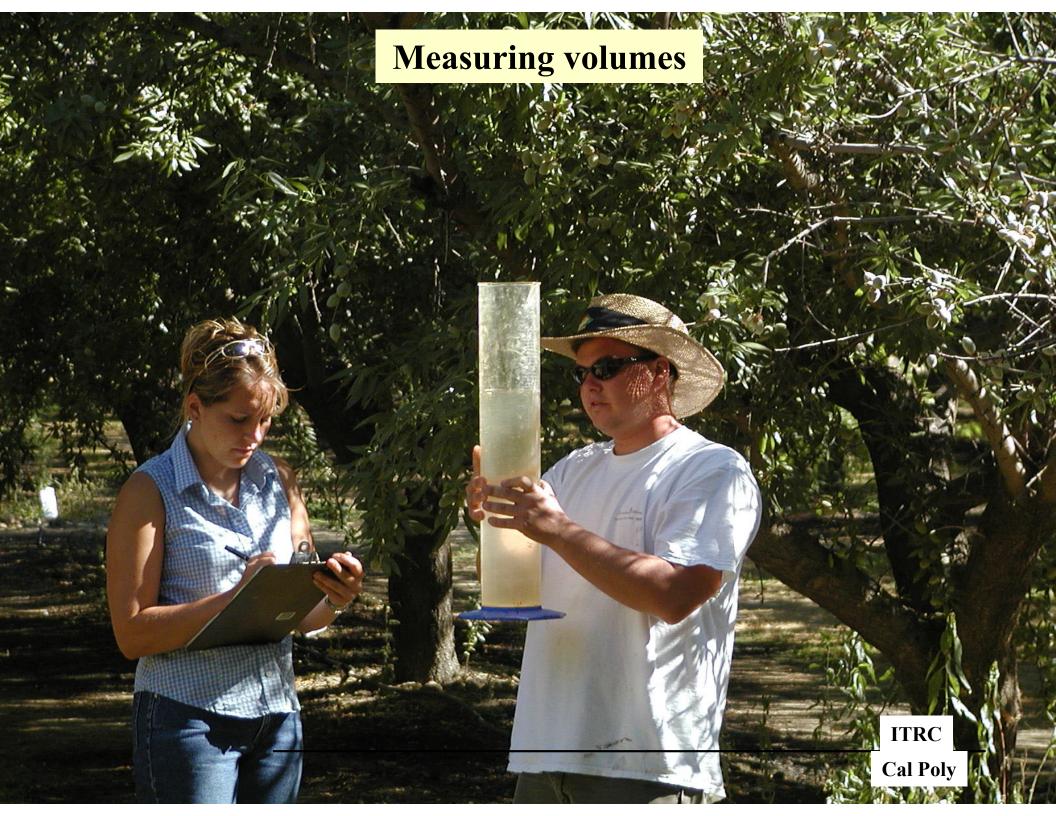
#### **DRIP/MICRO EVALUATION: RESULTS**

| GLOBAL SYSTEM DULQ                                   |        | 0.90 |
|------------------------------------------------------|--------|------|
| (Low Quartor initiation / Avorago initiation)        |        |      |
| DISTRIBUTION UNIFORMITY PROBLEMS -                   |        |      |
| PERCENT OF TOTAL NON-UNIFORMITY DUE TO EACH PROBLEM: |        |      |
|                                                      |        |      |
| Pressure differences                                 |        | 26%  |
|                                                      |        |      |
| Difference between hose inlet pressures:             | 17 psi |      |
| Maximum pressure difference within a hose:           | 20 psi |      |
|                                                      |        |      |
| Other causes of flow variation                       |        | 73%  |
|                                                      |        |      |
| Unequal Drainage                                     |        | 1%   |

## Results – Year 3

#### **DRIP/MICRO EVALUATION: RESULTS**

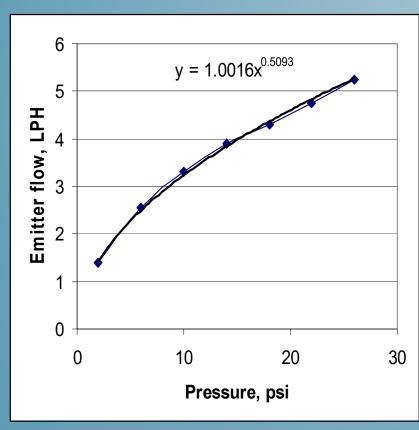
| GLOBAL SYSTEM DULQ                                                                                    |                 | 0.98 |
|-------------------------------------------------------------------------------------------------------|-----------------|------|
| DISTRIBUTION UNIFORMITY PROBLEMS - PERCENT OF TOTAL NON-UNIFORMITY DUE TO EACH PROBLEM:               |                 |      |
| Pressure differences                                                                                  |                 | 16%  |
| Difference between hose inlet pressures across the field:  Maximum pressure difference within a hose: | 9 psi<br>13 psi |      |
| Other causes of flow variation                                                                        |                 | 84%  |
| Unequal Spacing                                                                                       |                 | 0%   |
| Unequal Drainage                                                                                      |                 | 0%   |

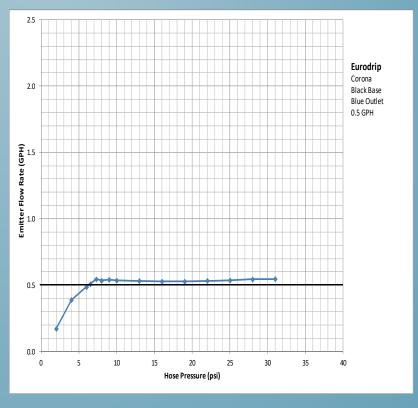

## **Pressure Distribution**

#### **Pressure (psi) Differences along Laterals**

|    | 6  |      |    |      |      |
|----|----|------|----|------|------|
| 35 | 40 | 39   | 39 | 40   | 40   |
| 36 | 41 | 39   | 40 | 40.5 | 41   |
| 43 | 45 | 46   | 45 | 47   | 47   |
| 34 | 39 | 37   | 37 | 39   | 38.5 |
| 32 | 36 | 35.5 | 35 | 36   | 36   |
|    |    |      |    |      |      |
| 29 | 31 | 32   | 29 | 34   | 32   |
| 30 | 31 | 32   | 30 | 35   | 32   |
| 38 | 41 | 40   | 38 | 41   | 40   |
| 27 | 30 | 32   | 29 | 32   | 31   |
| 27 | 27 | 29   | 25 | 28   | 29   |
|    |    |      |    |      |      |

|   | Block Valve       |
|---|-------------------|
| l | Manifold line     |
|   | Main/Submain line |
| # | Pressure, psi     |



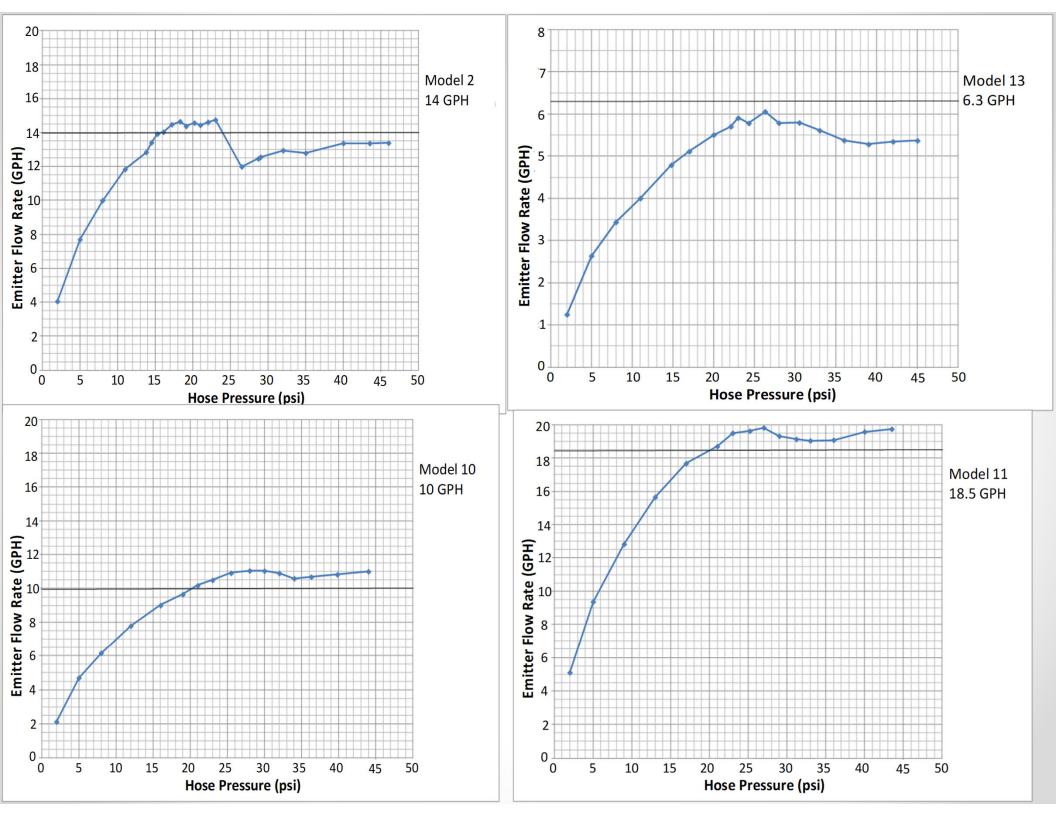

# Components

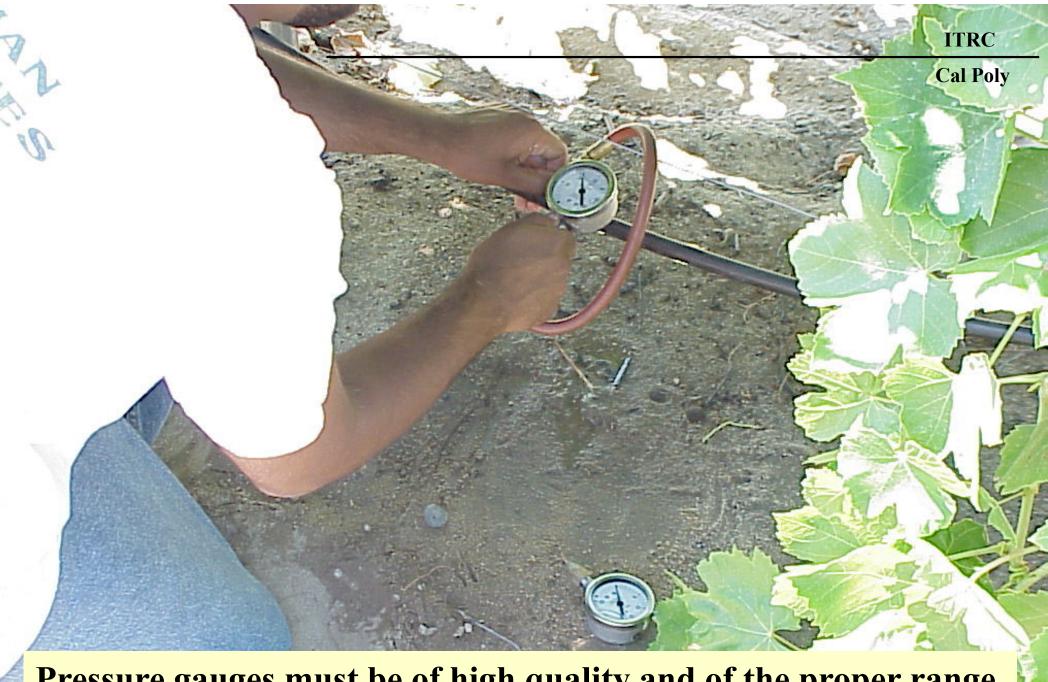
#### **Pressure Differences**

## Non-PC emitters PC emitters








# How about PC microsprayers?

They aren't nearly as good as the low flow PC emitters.

- •High pressure requirements.
- Varying flows with pressure changes.
- •Often the flow isn't the published **nominal** flow.





Pressure gauges must be of high quality and of the proper range.

We test our gauges frequently.

Ideally, use only one gauge for all pressure measurements.

### Solutions to Pressure Differences

- Down a hose Too late
- Between hoses
  - Pre-set pressure regulators
  - Remove hose screen washers
- Between blocks
  - Adjust pressure regulators
  - Install pressure regulators







# Preventative Maintenance

## **Preventative**

# #1 - FLUSH HOSES REGULARLY



# #2 - Chemical Injection

- Dosages
- Frequency
- Location
- Other items

# Chemical Injection (Plugging)

#### Dosages

Avoid very large dosages – such as pulling up a trailer and dumping in 3 months of fertilizer - there can be plugging problems.

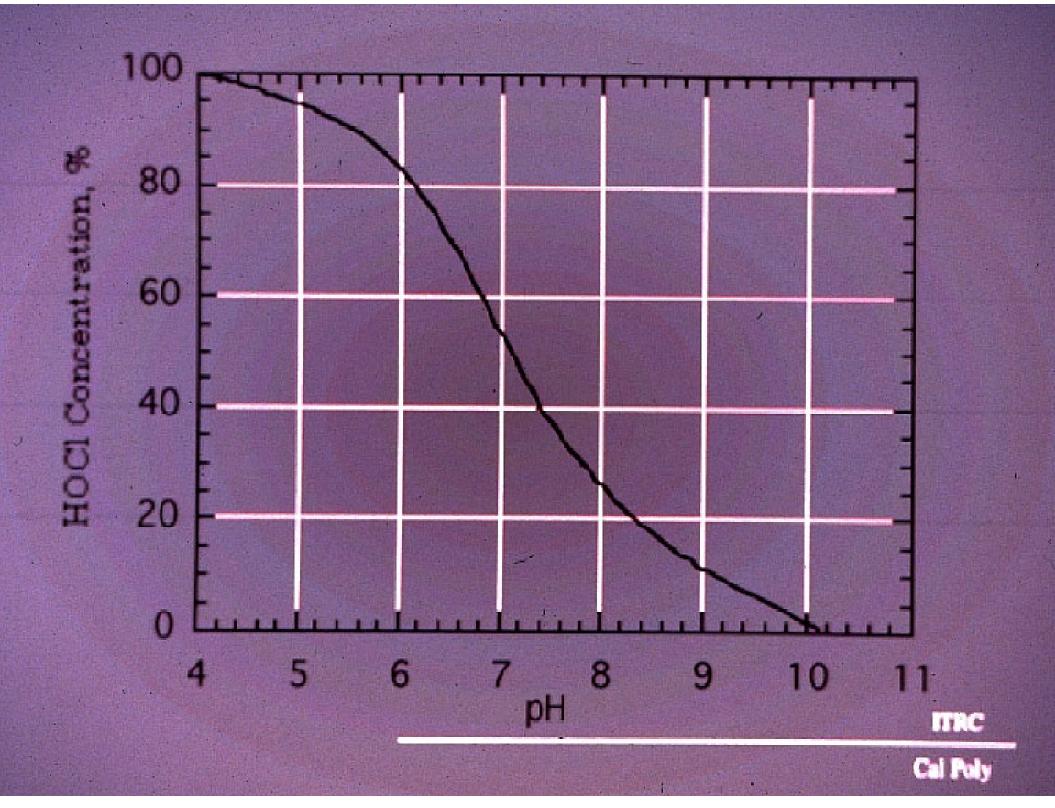


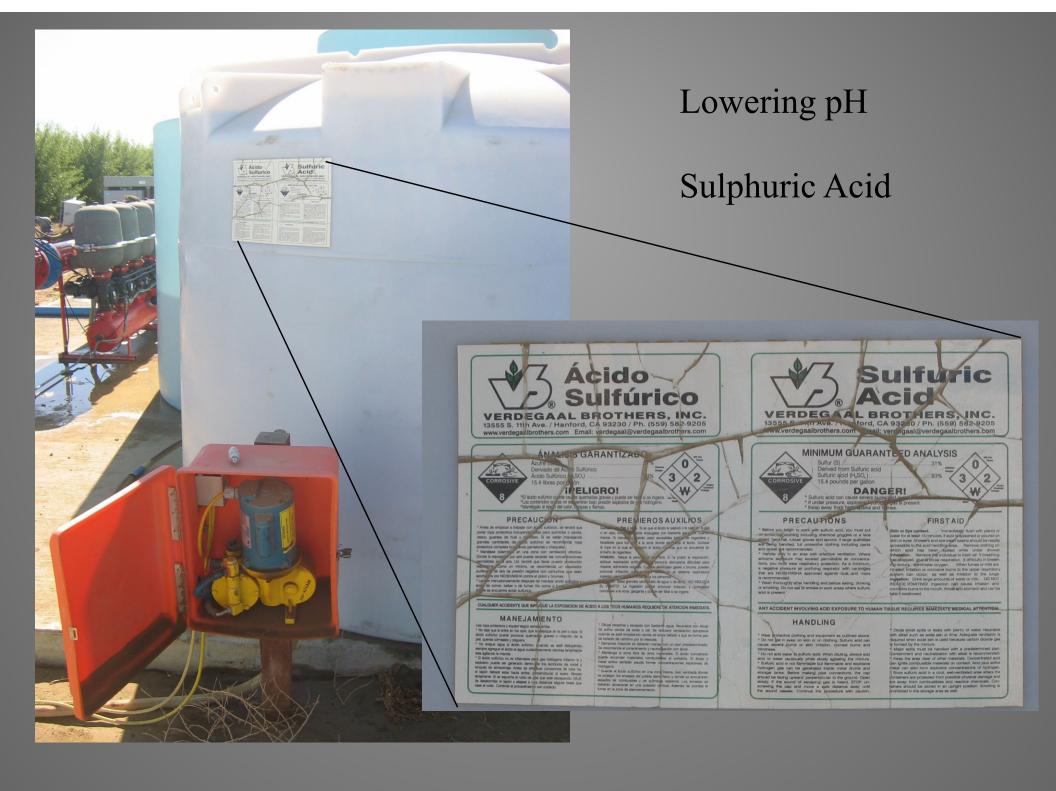
# **Chemical Injection**

#### Frequency

- At least once/week allows you to match demands.
- Proportional and continuous are nice, but sometimes become complicated.

## **Plugging Prevention**


- Chemicals
  - Chlorine (PLUS acid)
  - Various Polymers
    - For organics?
    - For iron, manganese?
  - Aeration
  - -50
  - Magnets????
  - Magic?????


# How often should chlorine be injected?

- As often as necessary.
  - In other words, it depends on the water quality.
     In some systems chlorine must be injected continuously. In other systems, once a week is fine.
  - Check the ends of hoses to see if the maintenance program is fine.

# Chlorine

- 0.5 5 ppm
  - Bactericide
  - Oxidizer of iron
- 100 1000 ppm
  - Oxidizes organic materials
  - Kills plants

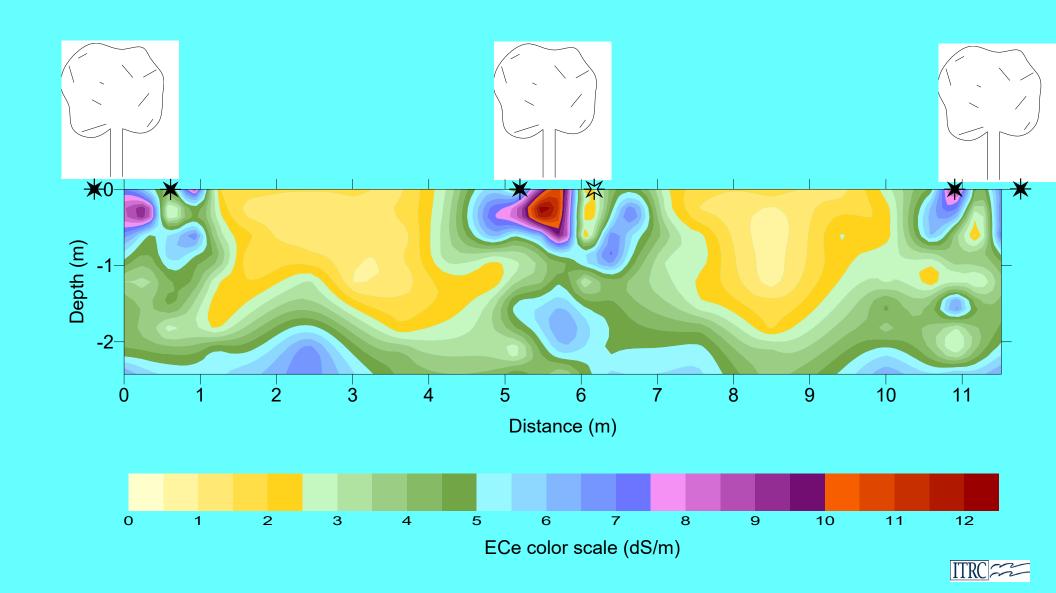




# **Plugging Prevention**






Table 9. Characteristics of the media filter tanks

|            |                                                                             |       | Me             | <b>i</b> |              |                  |                  |                         |
|------------|-----------------------------------------------------------------------------|-------|----------------|----------|--------------|------------------|------------------|-------------------------|
| Feature    | Characteristic                                                              | Arkal | Flow-<br>Guard | Lakos    | Lakos<br>New | Waterman<br>Wand | Waterman<br>Dome | Relative<br>Importance* |
|            | Friction during filtration with #16 silica media @250 GPM, psi              | 2.3   | 0.8            | 0.9      |              | 2.2              | 2.1              | 2.5                     |
| Valve      | Friction during backflush with #16 silica media @200 GPM, psi               | 5.0   | 3.0            | 2.8      |              | 11.5             | 11.5             | 5                       |
|            | Pressure required to open, psi                                              | 13.0  | 5.0            | 6.0      |              | 5.0              | 6.0              | 5                       |
|            | Valve closure time at 22-25 psi, sec.                                       | 13.0  | 7.0            | 9.0      |              | 4.0              | 5.0              | 6                       |
|            | Total friction loss during filtration @250 GPM                              | 4.3   | 2.2            | 2.5      |              |                  | 3.6              | 3                       |
| System     | when clean                                                                  | 4.3   | 2.2            | 2.5      |              |                  | 3.6              | 3                       |
| System     | Total friction loss during filtration @200 GPM when clean                   | 6.0   | 3.5            | 3.0      |              |                  | 13.0             | 5                       |
|            |                                                                             |       |                |          |              |                  |                  |                         |
| Sand       | Mass of sand (grams) in 2 minutes @250 GPM                                  | 0.2   | 48.6           |          | 18.5         | 0.0              | 2.2              | 10                      |
| Removal    | Mass of sand (grams) in 2 minutes @200 GPM                                  | 0.0   | 0.7            |          | 0.7          | 0.0              | 0.1              |                         |
|            | T                                                                           |       |                |          | Γ            |                  |                  |                         |
|            | Horizontal area (sq. cm.) served by each pod<br>or wand unit                | 214   | 613            | 446      |              | 117              | 214              | 6                       |
|            | Coefficient of variation of the horizontal area<br>served per pod/wand unit | 0.24  | 0.14           | 0.31     |              | 0.75             | 0.17             | 8                       |
| Underdrain | % of the horizontal area that is covered by pods or wands                   | 9     | 3              | 7        |              | 32               | 12               | 8                       |
|            | Mean slot width, mm.                                                        | 0.33  | 0.23           |          | 0.27         | 0.19             | 0.29             |                         |
|            | Std. Deviation of slot widths, mm.                                          | 0.036 | 0.029          |          | 0.036        | 0.026            | Not meas.        | 5                       |
|            | Total slot open area, sq. Cm.                                               | 200   | 184            |          | 261          | 343              | 108              | 5                       |
| Cumana     | Total best ratings                                                          | 1     | 7              |          | 5            | 8                | 4                |                         |
| Summary    | Total worst ratings                                                         | 6     | 3              |          | 1            | 3                | 4                | ]                       |

<sup>\*</sup>The greater the Relative Importance value, the more important this characteristic is.

# Challenges with Water Quality and Salinity

# Research - Long term salinity buildup on the West Side of the San Joaquin Valley <u>DRIP irrigation</u>



#### Impact of Salinity with Different Salts



20 dS/m NaCl



10 dS/m NaCl



5 dS/m NaCl



0 dS/m NaCl added

#### Key Point: Chloride salts are BAD



10 dS/m KSO4

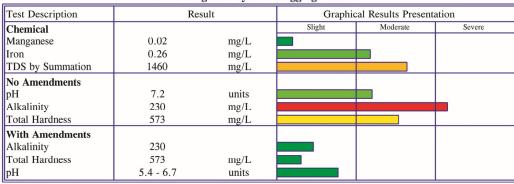
20 dS/m KSO4



5 dS/m KSO4



0 dS/m KSO4 added




#### <u>Reiter Brothers Matthews Ranch Well Water +</u> <u>Amendments – November 19, 2008</u>

#### **General Irrigation Suitability Analysis**

| Test Description     |        | Result |            | Graphical Results Presentation                  |                     |                     |                       |                   |  |
|----------------------|--------|--------|------------|-------------------------------------------------|---------------------|---------------------|-----------------------|-------------------|--|
| Cations              | mg/L   | %      | Lbs/AF     | Good                                            | Possible<br>Problem | Moderate<br>Problem | Increasing<br>Problem | Severe<br>Problem |  |
| Calcium              | 157    | 36     | 430        | **                                              |                     |                     |                       |                   |  |
| Magnesium            | 44     | 16     | 120        | **                                              |                     |                     |                       |                   |  |
| Potassium            | 9      | 1      | 24         | **                                              |                     |                     |                       |                   |  |
| Sodium               | 238    | 47     | 650        |                                                 |                     |                     |                       |                   |  |
| Anions               |        |        |            |                                                 |                     |                     |                       |                   |  |
| Carbonate            | < 10   | 0      | 0          |                                                 |                     |                     |                       |                   |  |
| Bicarbonate          | 280    | 21     | 760        | **                                              |                     |                     |                       |                   |  |
| Sulfate              | 500    | 48     | 1400       | **                                              |                     |                     |                       |                   |  |
| Chloride             | 230    | 30     | 630        |                                                 |                     |                     |                       |                   |  |
| Nitrate              | < 0.4  | 0      | 0          |                                                 |                     |                     |                       |                   |  |
| Fluoride             | 0.3    | 0      | 0.8        |                                                 |                     |                     |                       |                   |  |
| Minor Elements       |        |        |            |                                                 |                     |                     |                       |                   |  |
| Boron                | 0.60   |        | 1.6        |                                                 |                     |                     |                       |                   |  |
| Copper               | 0.020  |        | 0.054      |                                                 |                     |                     |                       |                   |  |
| Iron                 | 0.26   |        | 0.71       |                                                 |                     |                     |                       |                   |  |
| Manganese            | 0.020  |        | 0.054      |                                                 |                     |                     |                       |                   |  |
| Zinc                 | < 0.02 |        | 0.00       |                                                 |                     |                     |                       |                   |  |
| Other                |        |        |            |                                                 |                     |                     |                       |                   |  |
| pН                   | 7.2    |        | units      |                                                 |                     |                     |                       |                   |  |
| E. C.                | 1970   |        | umhos/cm   |                                                 | 1                   |                     |                       |                   |  |
| SAR                  | 4.3    |        | mg/L       |                                                 |                     |                     |                       |                   |  |
| Crop Suitability     |        |        |            |                                                 |                     |                     |                       |                   |  |
| No Amendments        | Poor   |        |            |                                                 |                     |                     |                       |                   |  |
| With Amendments      | Poor   |        |            |                                                 |                     |                     |                       |                   |  |
| Amendments           |        |        |            |                                                 |                     |                     |                       |                   |  |
| Gypsum Requirement   | 0.4    |        | Tons/AF    | Do not ap                                       | oply if Sulfu       | ric Acid an         | nendment is           | applied.          |  |
| Sulfuric Acid (98%)  | 16     |        | oz/1000Gal | Or 39 oz/1000Gal of urea Sulfuric Acid (15/49). |                     |                     |                       |                   |  |
| Leaching Requirement | 16     |        | %          |                                                 |                     |                     |                       |                   |  |

#### Micro Irrigation System Plugging Hazard



problem Indicates physical conditions and/or phenological and amendment requirements.

Note: Color coded bar graphs have been used to provide you with 'AT-A-GLANCE' interpretations.

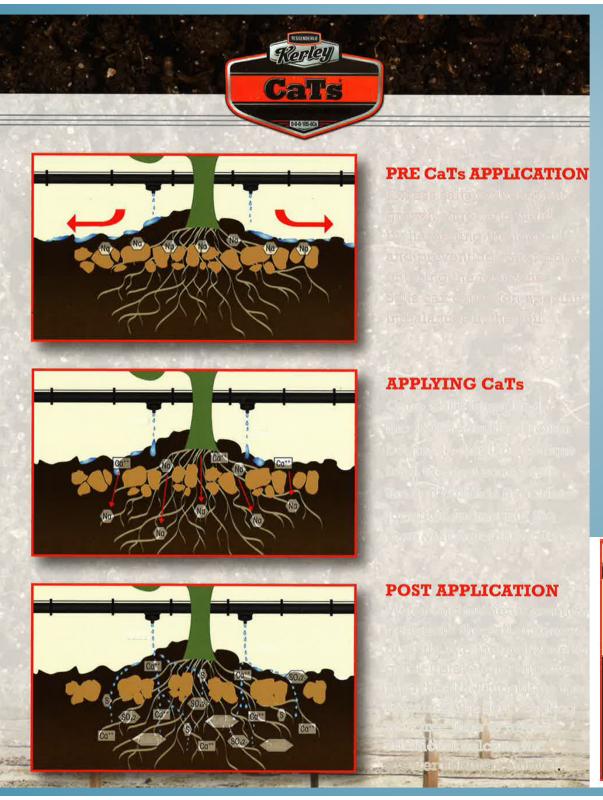
#### Avocado Irrigation Suitability Analysis

| Test Description     |        | Result |       |         |           | Graphical Results Presentation |                     |                       |                   |  |  |
|----------------------|--------|--------|-------|---------|-----------|--------------------------------|---------------------|-----------------------|-------------------|--|--|
| Cations              | mg/L   | Meq/L  | % Meq | Lbs/AF  | Good      | Possible<br>Problem            | Moderate<br>Problem | Increasing<br>Problem | Severe<br>Problem |  |  |
| Calcium              | 97     | 4.8    | 33    | 260     | **        |                                |                     |                       |                   |  |  |
| Magnesium            | 40     | 3.3    | 22    | 110     | **        |                                |                     |                       |                   |  |  |
| Potassium            | 6      | 0.15   | 1     | 16      | **        |                                |                     |                       |                   |  |  |
| Sodium               | 146    | 6.4    | 43    | 400     |           |                                |                     |                       |                   |  |  |
| Anions               |        |        |       |         |           |                                |                     |                       |                   |  |  |
| Carbonate            | < 10   | 0      | 0     | 0       |           |                                |                     |                       |                   |  |  |
| Bicarbonate          | 80     | 1.3    | 9     | 220     | **        |                                |                     |                       |                   |  |  |
| Sulfate              | 478    | 10     | 68    | 1300    | **        |                                |                     |                       |                   |  |  |
| Chloride             | 117    | 3.3    | 23    | 320     |           |                                |                     |                       |                   |  |  |
| Nitrate              | 1.2    | 0.019  | 0     | 3       |           |                                |                     |                       |                   |  |  |
| Nitrate Nitrogen     | 0.3    |        |       | 0.8     |           |                                |                     |                       |                   |  |  |
| Fluoride             | 0.7    | 0.037  | 0     | 2       |           |                                |                     |                       |                   |  |  |
| Minor Elements       |        |        |       |         |           |                                |                     |                       |                   |  |  |
| Boron                | 0.50   |        |       | 1.4     |           |                                |                     |                       |                   |  |  |
| Copper               | 0.080  |        |       | 220     |           |                                |                     |                       |                   |  |  |
| Iron                 | 0.24   |        |       | 650     |           |                                |                     |                       |                   |  |  |
| Manganese            | < 0.01 |        |       | 0.00    |           |                                |                     |                       |                   |  |  |
| Zinc                 | 0.030  |        |       | 82      |           |                                |                     |                       |                   |  |  |
| TDS by Summation     | 966    |        |       | 2600    |           |                                |                     |                       |                   |  |  |
| Other                |        |        |       |         |           |                                |                     |                       |                   |  |  |
| pН                   | 7.5    |        |       | units   |           |                                |                     |                       |                   |  |  |
| E. C.                | 1.38   |        |       | dS/m    |           |                                |                     |                       |                   |  |  |
| SAR                  | 3.1    |        |       |         |           |                                |                     |                       |                   |  |  |
| Crop Suitability     |        |        |       |         |           |                                |                     |                       |                   |  |  |
| No Amendments        | Fairly |        | Good  |         |           |                                |                     |                       |                   |  |  |
| With Amendments      | Fairly |        | Good  |         |           |                                |                     |                       |                   |  |  |
| Amendments           |        |        |       |         |           |                                |                     |                       |                   |  |  |
| Gypsum Requirement   | 0.0    |        |       | Tons/AF |           |                                |                     |                       |                   |  |  |
| Sulfuric Acid (98%)  | 4.9    |        | (     |         | Or 12 oz/ | 1000 <b>G</b> al of            | urea Sulfui         | ric Acid (15          | 5/49).            |  |  |
| Leaching Requirement | 11     |        |       | %       |           |                                |                     |                       |                   |  |  |

Good Problem

Note: Color coded bar graphs have been used to provide you with 'AT-A-GLANCE' interpretations.



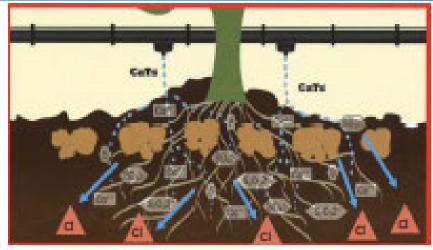

KTS® is a clear, chloridefree solution with the highest potassium and sulfur content available on the market.

Both potassium and sulfur can be supplied in one highly soluble form — KTS.

KTS boosts resistance to environmental stress.

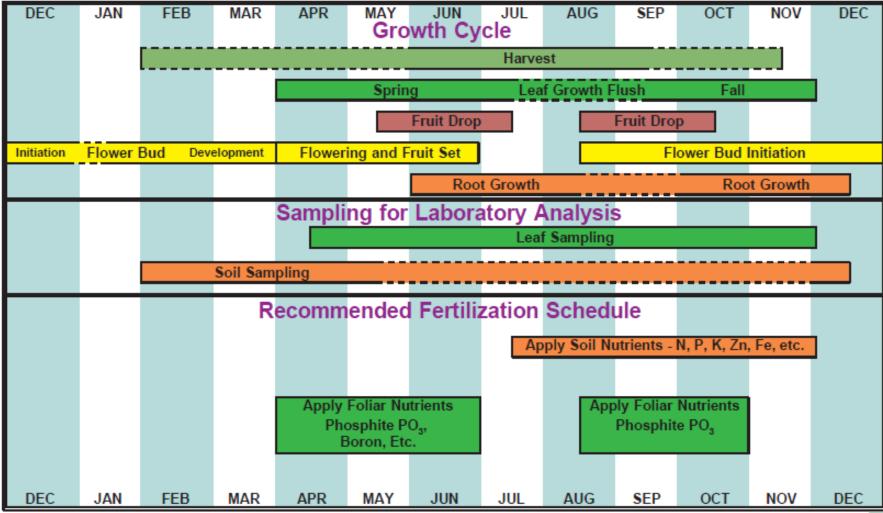
# Benefits of introducing KTS into your growing program:

- KTS has proven to be a great addition to N and P starters, because it supplies both potassium and sulfur — nutrients that are often in short supply in cold soils where root growth is limited.
- KTS is an excellent source of potassium for chlorine sensitive crops.
- Sandy soils, where nutrient holding capacity is limited, may benefit from starter fertilizers containing KTS.
- KTS is a foliar fertilizer an ideal product to supply potassium when crop demand is high.




### Adding Calcium Thiosulphate

Calcium exchanges with Sodium


Thiosulphate "counters" the negative effect of chlorides

Note: Works well in gypsiverous soils.
Will cause pH to drop if soil is low in
Calcium



#### AVOCADO TREES

Ventura and Santa Barbara County Growing Area



Indicates transition or less intensive periods.



# <u>Summary - Basic maintenance</u> ideas for a good irrigation system:

- 1. Good DU
- 2. Good filtration and hose flushing.
- 3. Inject fertilizers upstream of filter.
- 4. Continuous water treatment for PREVENTION of many problems.
- 5. Occasional "reclamation" of salts if needed.
- 6. End of season "winterizing" of system.



# End