Field and postharvest management of avocado fruit diseases

- Lindy Coates, Sonia Willingham, Ken Pegg, Tony Cooke, Jan Dean and Peter Langdon

- Queensland Horticulture Institute, DPI

- Funding: AAGF, HAL and QHI
Field and postharvest management of avocado fruit diseases

- Surveys have consistently identified postharvest disease (anthracnose and stem-end rot) as one of the major quality defects of avocado fruit displayed for retail sale.
- In “Hass” fruit, these diseases can be difficult for retailers and consumers to detect due to the black skin of ripe fruit. The thick skin of “Hass” also makes it difficult to determine optimum ripeness.
Field and postharvest management of avocado fruit diseases

- Increasing restrictions on pesticide use due to environmental and food safety concerns is another issue facing the avocado industry
- Preharvest application of copper-based fungicides
- Postharvest application of prochloraz
Causal agents of avocado fruit diseases

- In Australia, anthracnose is predominantly caused by the fungus *Colletotrichum gloeosporioides*. *C. acutatum* is a minor causal agent.
- Initial stages of infection by *C.g.* occur in the field on unripe fruit. Infections remain quiescent until fruit ripening.
- Biochemical changes which occur during fruit ripening are thought to be the primary trigger for allowing quiescence to “break”
- In particular, changes in the concentration of antifungal compounds called “dienes” are thought to be important in the regulation of anthracnose quiescence
- In unripe avocado fruit, diene levels in the fruit skin are high enough to stop the fungus from invading cells. During ripening, diene levels fall, allowing the fungus to invade
Causal agents of avocado fruit diseases

- Stem-end rot can be caused by a number of different fungi including *Dothiorella* spp., *Lasiodiplodia theobromae* and *Phomopsis perseae*.
- The anthracnose pathogen *C.g.* can also cause a stem-end rot of avocado fruit.
- The stem-end rot infection process has not been clearly established.
Causal agents of avocado fruit diseases

- Pepper spot: a field disease that has been increasing in importance over the past decade
- Caused by the anthracnose pathogen *C.g.*
- Symptoms superficial, but downgrade fruit
- Common in the cultivar Hass
- Affects fruit as well as stem tissue
- Often most severe on the upper sun-exposed side of fruit
- More common on stressed trees (eg. root rot)
Causal agents of avocado fruit diseases

- Sooty blotch: a field disease of avocado recently shown to be caused by the fungus *Stomiopeltis* sp. in Australia
- Symptoms superficial, but downgrade fruit
- Readily controlled by the copper spray program for anthracnose
Management of avocado fruit diseases

Maintenance of healthy avocado trees

- Nutrition - the role of calcium and nitrogen
- Rootstock - interaction with nutrition and antifungal compounds
- Tree hygiene - reduction of canopy density through pruning and removal of dead wood, leaves and infected fruit from tree canopies
Management of avocado fruit diseases

Fungicide application

- Copper-based fungicides applied from fruit set to harvest for anthracnose control
- This spray program will also control sooty blotch and pepper spot as well as give some control of stem-end rot
Management of avocado fruit diseases

Fungicide application

- The copper spray program must be applied every 28 days (or every 14 days during wet weather) in order to be effective, and is therefore a very labour intensive and costly practice
Management of avocado fruit diseases

Fungicide application

- The presence of visible copper residues on fruit can be a problem, particularly in Hass
- We are currently testing new formulations (eg. Kocide® Blue, Kocide® Liquid Blue and Liquicop®) for visible residues, disease control efficacy and phytotoxicity
Management of avocado fruit diseases

Fungicide application

- Currently the fungicide prochloraz (SportakR) is applied postharvest
- Prochloraz has some curative activity against \textit{C.g.} (anthracnose) infections
- Not effective against the stem-end rot pathogens
Management of avocado fruit diseases

Manipulation of the postharvest storage environment

- Avoidance of high ripening temperatures
- Controlled ripening using ethylene
- Prompt marketing of fruit
New compounds for disease control: the strobilurin fungicides

- Strobilurin fungicides synthesised from a natural compound (strobilurin A) isolated from a mushroom
- The strobilurins have been described as environmentally benign as they are active at low concentrations, have low toxicity to mammals and bees, are non-persistent in the environment and breakdown readily in the soil
New compounds for disease control: the strobilurin fungicides

- Classified as “reduced-risk” fungicides
- Broad spectrum activity
- In 1997 Zeneca released AmistarR (azoxystrobin) and BASF released StrobyR (kresoxim-methyl). Soon after, Novartis released FlintR (trifloxystrobin)
Effect of strobilurin fungicide foliar sprays on anthracnose in “Hass” avocado

- Control
- Kocide 14/28
- Amistar high 14/28
- Amistar low 28
- Amistar high 28
- Stroby low 28
- Stroby high 28
- Flint 14/28
- Kocide + Amistar
Effect of Amistar foliar sprays on anthracnose in “Fuerte” avocado
Effect of Amistar foliar sprays on sooty blotch in “Fuerte” avocado
Anti-resistance strategies for the strobilurin fungicides

- Limit use
 - only one third of the total number of fungicides applied in one season should be strobilurins
 - strobilurins should be blocked with other fungicides
Anti-resistance strategies for the strobilurin fungicides

- Monitor fungal populations for sensitivity to the fungicides
 - before using strobilurins (baseline sensitivity data)
 - during use of strobilurins to check for any shifts in sensitivity
- Strobilurin fungicides should not be used in any way until these strategies are in place and the compounds registered by the NRA
Effect of strobilurin fungicide foliar sprays applied in anti-resistance blocking programs with Kocide on anthracnose in “Hass” avocado

Anthracnose incidence (%)
Effect of strobilurin fungicide foliar sprays applied in anti-resistance blocking programs with Kocide on stem-end rot in “Hass” avocado
Effect of strobilurin fungicide foliar sprays applied in anti-resistance blocking programs with Kocide on pepper spot in “Hass” avocado

Pepper spot (1-6 scale)
Effect of postharvest dip treatments of Amistar on anthracnose in “Hass” avocado
Where to now for the strobilurin fungicides?

- Sufficient efficacy and residue data for preharvest application of Amistar on avocado has now been generated for a submission to the National Registration Authority (NRA).
- The reports containing this data have been made available to the manufacturers of Amistar for inclusion in a NRA submission.
Vision for the future

- Effective management of avocado fruit diseases will require an integrated approach.
- Much more emphasis will be placed on rootstock selection when establishing orchards.
- Nutritional recommendations for avocado will take into account combinations of nutrients which minimise disease.
Vision for the future

- Copper fungicide use will be reduced and incorporated with strobilurins (and/or other reduced-risk fungicides) and host defence promoting compounds (eg. Bion)
- Postharvest application of fungicides will be restricted
- More emphasis will be placed on controlling the postharvest environment
Acknowledgements

- Funding from the AAGF, HAL and QHI
- The Anderson and Eden families for allowing us to conduct field trials on their properties
- Mr Glen Tucker from Crop Care for supporting our strobilurin work