Session Six
Postharvest quality, outturn

New Zealand and Australia Avocado Grower’s Conference’05
20-22 September 2005
Tauranga, New Zealand
Improving avocado fruit quality through tree nutrition

Present knowledge
Future challenge

Peter Hofman, Chris Searle, Roberto Marques, Barbara Stubbings, Phil Moody

Department of Primary Industries and Fisheries
Department of Natural Resources
Or – how to keep on making money!!
Hypothesis, and the “Holy Grail”

“Few postharvest disorders of fruit (including diseases) are completely independent of pre-harvest factors” (van Rooyen and Bower 2003)

• Aim:
 – increase fruit robustness at harvest to withstand postharvest stresses
 – develop a prediction system to reduce disorders and get consistent outturn
So far!

Long history of Ca and quality in fruits

Diffuse discoloration (1-5) $\quad r = 0.83^{**}$

Anthracnose severity (1-5) $\quad r = 0.88^{**}$

Calcium concentration (mg kg$^{-1}$)

Individual, adjacent trees

Hofman, Vuthapanich, Whiley, Klieber, Simmons 2001
Other minerals

- Mg and K can also be related to fruit quality
 - More fruit Mg, better quality
 - Less fruit K, better quality
- Relationships not as strong as with Ca
- Most likely through interaction with Ca
Nitrogen

• Comparing fruit from high/low N sites
 – N strongly related to quality
 (van Rooyen and Bower 2003; Kruger et al 2004)

• Recommendations for fruit N in fruit
 – <1.7% in Dec, and <1% during Feb
 (Kruger et al 2004)

• Increased N applications
 – indications of increased rots
 (Willingham et al 2003)
Crop load

On-year good quality
Off-year reduced quality

Fruit yield per tree (kg)

Body rots (1-5)

Crop load (kg/m³ of canopy)

Body rots (% of flesh affected)

\[r = 0.81^{**} \]

\[r^2 = 0.18 \]
The nitrogen/crop load dilemma?

Yield
- Low yield
- Lower fruit N
- Larger fruit
- Lower Ca
- Lower quality

Optimum N
- High yield
- Smaller fruit
- Higher Ca
- Higher quality

Quality
- Not so good
- Good

Nitrogen
- Low yield
- Higher fruit N
- Larger fruit?
- Lower Ca
- Reduced quality
So!!

- When excess soil N common:
 - benefit in reducing fruit N

- When excess soil N not common (Australia?):
 - Negative effect of less N on fruit quality (through crop load)?

- What then?
 - Increase crop load
 - Genetics
 - Reduce plant stress (N, water etc)
 - Continue to focus on Ca
Challenges with Ca

- Correlations between fruit Ca and quality are common (using surveys), but...

- Challenging to manipulate fruit Ca and quality by fertiliser and other practices
Ca effect on plant minerals

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Ca concentration</th>
<th>Early December</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sap (mg/L)</td>
<td>Leaf (g/Kg)</td>
<td>Fruitlet flesh (g/Kg)</td>
</tr>
<tr>
<td>Control</td>
<td>14.2</td>
<td>14.3</td>
<td>1.56</td>
</tr>
<tr>
<td>6-MG</td>
<td>20.4</td>
<td>14.2</td>
<td>1.66</td>
</tr>
<tr>
<td>12-MG</td>
<td>18.3</td>
<td>15.2</td>
<td>1.59</td>
</tr>
<tr>
<td>12-G</td>
<td>15.7</td>
<td>14.3</td>
<td>1.47</td>
</tr>
<tr>
<td>P value</td>
<td></td>
<td></td>
<td>0.11</td>
</tr>
</tbody>
</table>

Note: Values with different letters (a, b, ab) are significantly different at the 0.05 level.
Ca effect in fruit quality

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Ripening Time (days)</th>
<th>Flesh volume affected (%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Body rots</td>
<td>Stem end rots</td>
</tr>
<tr>
<td>Control</td>
<td>12.2 ^{a}</td>
<td>9.3 ^{a}</td>
<td>4.3 ^{a}</td>
</tr>
<tr>
<td>6-MG</td>
<td>12.6 ^{b}</td>
<td>12.0 ^{b}</td>
<td>6.2 ^{b}</td>
</tr>
<tr>
<td>12-MG</td>
<td>12.3 ^{a}</td>
<td>10.1 ^{a}</td>
<td>5.5 ^{b}</td>
</tr>
<tr>
<td>12-G</td>
<td>12.4 ^{a}</td>
<td>10.6 ^{ab}</td>
<td>6.0 ^{b}</td>
</tr>
</tbody>
</table>

No effect on flesh disorders
Ca/K interactions (seedlings)

<table>
<thead>
<tr>
<th>Soil treatment</th>
<th>Xylem sap (mg/L)</th>
<th>Leaf (g/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ca</td>
<td>K</td>
</tr>
<tr>
<td>Control</td>
<td>26 b</td>
<td>135 a</td>
</tr>
<tr>
<td>2 x Ca</td>
<td>26 b</td>
<td>158 a</td>
</tr>
<tr>
<td>4 x K</td>
<td>14 a</td>
<td>231 b</td>
</tr>
</tbody>
</table>
Other considerations: Rootstock

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Xylem sap (mg/L)</th>
<th>Leaf (g/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ca</td>
<td>K</td>
</tr>
<tr>
<td>Reed</td>
<td>22</td>
<td>185 b</td>
</tr>
<tr>
<td>Smerdon</td>
<td>25</td>
<td>177 b</td>
</tr>
<tr>
<td>Toro Canyon</td>
<td>22</td>
<td>193 b</td>
</tr>
<tr>
<td>Velvick</td>
<td>19</td>
<td>144 a</td>
</tr>
</tbody>
</table>
Rootstock effects

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Non-suberised root (g/Kg)</th>
<th>Leaf (g/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ca</td>
<td>K</td>
</tr>
<tr>
<td>Duke 7</td>
<td>2.22</td>
<td>9.69</td>
</tr>
<tr>
<td>Fuerte</td>
<td>1.71</td>
<td>10.18</td>
</tr>
<tr>
<td>Hass</td>
<td>1.54</td>
<td>9.98</td>
</tr>
<tr>
<td>Velvick</td>
<td>1.84</td>
<td>13.66</td>
</tr>
</tbody>
</table>

P value:
- Rootstock: 0.093
- Leaf: 0.001
- Non-suberised root: 0.093
- Ca: 0.001
Conclusions

• Nitrogen
 – Related to quality
 – Fruit concentration targets for acceptable quality
 – Data on interaction with crop load?
 – Not sure of relevance when excess N is uncommon

• Crop load
 – Aim to maximise crop load
 – Minimise stress by nutrition, water, genetics

• Ca/Mg/K
 – Current treatments having less impact on fruit Ca compared with survey results
 – Consider other factors
 • Genetics
 • Potassium
 • Other soil interactions
 • Crop load etc
Too many New Zealanders are using too few brain cells.