Session Nine
Fruit size and production

New Zealand and Australia Avocado Grower’s Conference’05
20-22 September 2005
Tauranga, New Zealand
Mulching – is it worth it?

A Sustainable Farming Fund project in association with Perry Environmental Ltd and Living Earth Ltd

Jonathan Dixon, Toni Elmsly, Fiona Fields, Derek Smith, Andrew Mandemaker, Anne Greenwood, Henry Pak and Jonathan Cutting

Avocado Industry Council Ltd
Introduction

• Mulching is widely regarded as a worthwhile management practice as it:
 • improves yield
 • maintains soil moisture
 • improves root numbers & function

• The negatives are:
 • hard to get a reliable supply
 • becoming expensive
 • impact on fertilizer availability
Introduction

• Utilize greenwaste as a reliable supply of mulch
• Greenwaste companies [Living Earth Ltd and Perry Environmental Ltd]
• Waste material from their composting operations
• Increasing supply of greenwaste
• Greenwaste products are: compost, compost tailings, pasteurized but uncomposted greenwaste
Introduction

Asked four questions:

• What should the mulch be made of?
• How much should be applied?
• Where should mulch be applied?
• When should mulch be applied?
Introduction

Asked four questions:

• What should the mulch be made of?
• How much should be applied?
• Where should mulch be applied?
• When should mulch be applied?
Experimental

- 5 orchards
- 100 mm thickness
- 1 m wide band centered on the drip line
- Treatments applied to randomly selected trees
- Trees similar size and shape
- 5 trees per treatment
- 7 mulch treatments
Experimental

Mulch treatments were:

- Minimal mulch – regular removal of mulch
- Leaf litter – accumulation
- Compost
- 10 day greenwaste
Experimental

Mulch treatments were:

• Bark + 20% compost

• Post peelings

Controls:- minimal mulch, leaf litter, post peelings
Measurements

- Shoot growth
- Trunk circumference
- Weed cover
- Yield
- Soil moisture
- Roots
- Mulch breakdown
- Minerals
Shoot growth

![Graph showing the increase in shoot length (%)]

- 2003-2004
 - Min Mulch
 - Leaf litter
 - Compost
 - 10 day greenwaste
 - Bark + compost
 - Tailings
 - Post peelings
- 2004-2005
 - Min Mulch
 - Leaf litter
 - Compost
 - 10 day greenwaste
 - Bark + compost
 - Tailings
 - Post peelings

The graph illustrates the increase in shoot length (%) for different treatments over two years.
Trunk circumference

![Graph showing the increase in trunk circumference over 3 years for different treatments: Min Mulch, Leaf litter, Compost, 10D GreenW, Bark+Comp, Tailings, and Post peelings. The graph indicates that Compost and 10D GreenW show the highest increase, while Min Mulch shows the lowest.](image)
Soil moisture

9/1/2003

14/1/2004

Tensiometer reading (-kPa)

30 cm

60 cm
Weeds

- Min Mulch
- Leaf litter
- Compost
- 10 day greenwaste
- Bark + compost
- Tailings
- Post Peelings

Weed cover (%)
Yield

• Third harvest in 2005/06 season
• 2003/04 and 2004/05 low crop years
• 2004/05 harvest suggest compost and post peelings had highest yields
 -but off a very low yield base
• Reserve judgment until after final harvest
Roots

Root coverage at the soil mulch interface (%)

- Min Mulch
- Leaf litter
- Compost
- 10 Day greenwaste
- Bark+comp
- Tailings
- Post peelings
Mulch breakdown

<table>
<thead>
<tr>
<th>Material</th>
<th>Time to halve mulch depth (1st year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compost</td>
<td>0.0</td>
</tr>
<tr>
<td>10 day greenwaste</td>
<td>0.5</td>
</tr>
<tr>
<td>Bark+comp</td>
<td>1.0</td>
</tr>
<tr>
<td>Tailings</td>
<td>1.5</td>
</tr>
<tr>
<td>Post peelings</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Minerals

Mineral composition as kg per m³. Mn, Zn, Cu, B are g per m³

Mulch material

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Compost</th>
<th>10 Day greenwaste</th>
<th>Bark +compost</th>
<th>Tailings</th>
<th>Post peeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>8.1-6.8</td>
<td>3.8-3.2</td>
<td>5.1-3.4</td>
<td>5.1-4.8</td>
<td>1.0-0.2</td>
</tr>
<tr>
<td>P</td>
<td>2.5-2.1</td>
<td>0.7-0.4</td>
<td>1.2-0.9</td>
<td>2.3-2.1</td>
<td>0.07-0.03</td>
</tr>
<tr>
<td>S</td>
<td>1.4-1.1</td>
<td>1.0-0.4</td>
<td>0.8-0.6</td>
<td>1.4-1.2</td>
<td>0.09-0.03</td>
</tr>
<tr>
<td>K</td>
<td>4.3-1.6</td>
<td>2.3-0.7</td>
<td>3.4-0.7</td>
<td>4.9-1.9</td>
<td>0.8-0.1</td>
</tr>
<tr>
<td>Ca</td>
<td>17.3-13.1</td>
<td>6.2-4.7</td>
<td>10.2-8.9</td>
<td>9.5-9.2</td>
<td>0.7-0.2</td>
</tr>
<tr>
<td>Mg</td>
<td>1.8-1.7</td>
<td>1.5-0.8</td>
<td>1.3-0.8</td>
<td>1.3-1.1</td>
<td>0.2-0.08</td>
</tr>
<tr>
<td>Na</td>
<td>0.9-0.2</td>
<td>0.4-0.2</td>
<td>0.7-0.02</td>
<td>1.1-0.05</td>
<td><0.01</td>
</tr>
<tr>
<td>Fe</td>
<td>5.5-4.2</td>
<td>3.9-1.8</td>
<td>1.7-1.7</td>
<td>2.7-1.6</td>
<td>0.2-0.15</td>
</tr>
<tr>
<td>Mn</td>
<td>217-193</td>
<td>156-72</td>
<td>122-119</td>
<td>194-136</td>
<td>22-18</td>
</tr>
<tr>
<td>Zn</td>
<td>114-91</td>
<td>85-42</td>
<td>110-49</td>
<td>122-59</td>
<td>9-3</td>
</tr>
<tr>
<td>Cu</td>
<td>39-29</td>
<td>28-8</td>
<td>35-11</td>
<td>37-14</td>
<td>2-1</td>
</tr>
<tr>
<td>B</td>
<td>15-8</td>
<td>7-6</td>
<td>12-7</td>
<td>10</td>
<td>3-0</td>
</tr>
</tbody>
</table>
Minerals

• Only soil P, K, Mg and B showed differences
• Present at higher amounts in the soil under mulches
• Not reflected in leaf mineral content
• Probably reflect orchard fertilizer programme and soil moisture
• Expect mulches to release nutrients slowly depending on soil biological activity
Minerals

Soil Potassium (me/100g)

- Min Mulch
- Leaf litter
- Compost
- 10 day greenwaste
- Bark+compost
- Tailings
- Post peelings

2004

2005
Biological activity

Average number of worms in 15cm x 15 cm of soil

- Min Mulch
- Leaf Litter
- Compost
- 10 day greenwaste
- Tailings
- Post peelings

[Graph showing biological activity]
Summary

Mulches:

• led to a tendency for greater trunk growth
• can increase the amount of roots
• can increase the amounts of some minerals in the soil
• some are effective slow release fertilizers
• are not a substitute for irrigation
• improve soil biological activity
Is there a payback for mulching?

• Yes but it is long term and not easy to quantify
• An improved root environment and root numbers should help with productivity
• May be a useful management tool to change the soil environment
 • e.g. increasing soil biological activity may mean applying a mulch with some compost
• Other factors appear to have more influence on the tree than mulch, e.g. alternate bearing cycle, fertilizer programme
Acknowledgements

Growers, packhouses, SFF etc