

Session Nine Fruit size and production

New Zealand and Australia Avocado Grower's Conference'05 20-22 September 2005 Tauranga, New Zealand

Growing Avocados in Chile: A Focus on Orchard Systems, Fruit Set and Size

Francisco Mena Völker Pontificia Universidad Católica de Valparaíso Sociedad Gardiazabal y Magdahl Ltda.

Introduction

- Climatic Conditions.
- Quality and Availability of Water.
- Low Incidence of Pests.
- Possibility to Grow Avocados on Steep Slopes.
- Growers vision.

Chilean Avocado Production Areas

Coastal Areas

- Low heat accumulation. (±1.000 h > 13,5°C).
- High Humidity (90 40%).
- Low risk of cold
- Cold winds during flowering.
- Low temperatures during flowering (fruit set)
- Extreme temperatures (means).
 - Summer: 10 26 °C
 - Winter : 2 18 °C
- ETo Dec. 7,1 mm/day.
- Rainfall: 400 mm.V Region
- Coastal wind during spring and Summer

Inland Areas

- High heat accumulation. (±1.400 h > 13,5°C).
- High Humidity (80 25%).
- High risk of cold (Hills)
- Less wind problems.
- High temperatures during flowering (fruit set)
- Extreme temperatures (means).
 - Summer : 18 33 °C
 - Winter : 0 22 °C
- ETo Dec. 10,2 mm/day.
- Rainfall: 200 mm.V Region
- Mostly sunny during spring and Summer

The Growth in Numbers – Area Planted with Avocados

The Growth in Numbers – Production Tons x 1000 1994 1995 1996 1997 1998 1999 2000 2001 2002*2003 *2004 *2005*

Year

The Growth in Numbers – Proyections

Production (tons x 1000)

The Growth in Numbers – Exports

The Challenge

 Maintain profitability with increasingly higher volumes and competition at destination markets

Facing the Challenge

- Yield is not the main factor anymore
- Production and Fruit Size.
- Production Costs (per kilo, not per hectare).
- Production efficiency

Strategies to Face The Challenge

✓ Understanding the Crop (Phenology)

Avocado Phenology (PUCV- Quillota) Relative Growth

Rep. Growth —Veg. Growth —Flowering —Root Growth —Fruit Drop —Fruit Growth

Phenology

- The base for every cultural practice.
- Anticipate the response of the tree.
- Key to Orchard Management.

What's new:

- Develop models for Inland areas.
- Redo the models for the Quillota and other areas under new management tools and rootstocks.

Strategies to Face The Challenge

- Understanding the Crop (Phenology)
- ☑ Irrigation

Irrigation

- Irrigation in Chile is a Must.
- 80% of the Orchards with pressurized irrigation systems.
- Micro sprinklers and Micro jets the most common.

Scheduling Irrigation

• Evaporation Pan and Crop Coefficient.

Irrigation in Avocados. Seasons 1998 - 1999 & 1999 - 2000

Treatments

- T1: 90% ETc
- T2: 100% ETc
- T3: 110% ETc
- T4: 130% ETc
- T4: 130% ETc

Average Harvest per Treatment, Years 1999 - 2000

■T1: 90% ETc■T2: 100% ETc■T3: 110% ETc■T4: 130% ETc

Relation between fruit Size and Treatments

	CAL 36	CAL 40	CAL 50	CAL 60	CAL 70	CAL 84	PRECAL
T1: 90%	0,00 a	1,08 a	14,59 a	28,57 a	26,26 b	12,97 b	16,52 b
T2: 100%	0,03 a	3,82 a	28,17 b	31,67 a	21,74 ab	7,40 a	7,17 a
T3: 110%	0,06 a	4,40 a	26,83 b	31,30 a	17,22 a	4,87 a	5,33 a
T4. 130%	0,17 a	4,04 a	28,38 b	30,99 a	21,19 ab	7,83 ab	7,40 a
							A 2004

GAMA ZUU

Economic Analysis of the Results (1)

Calibre	T1: 90%	T2: 100% ¹	T3: 110%	T4: 130%
36	0	4,20	8,79	23,54
40	119,60	534,80	644,33	559,52
50	1.615,75	3.950,38	5.393,37	3.930,46
60	3.163,96	4.433,80	4.583,56	4.291,93
70	2.908,14	3.043,60	2.521,69	2.934,69
84	1.436,35	1.036,00	713,16	1.084,41
Precal (M Nac)	1.829,49	1003,80	780,52	1.024,86

100%: 14.000 N/Hd.

GAMA 2001

Economic Analysis of the Results (2)

Calibre		T1: 90%	T2: 100% ¹	T3: 110%	T4: 130%	
CAL	US\$/K	<mark>36</mark>	0	5,04	10,54	28,25
36	1,20	40	125,58	561,54	676,55	587,49
50	1,00	50	1.615,75	3.950,38	5.393,37	3.930,46
60	0,70	60	2.214,77	3.103,66	3.208,49	3.004,35
70	0,50	70	1.454,07	1.521,80	1.260,85	1.467,35
M.N.	0,30	<mark>84</mark>	430,90	310,80	213,95	325,32
Prec	al (M N	lac)	457,37	250,95	195,13	256,21
	ТОТ	AL	6.298,45	9.704,17	10.958,89	9.599,44

GAMA 2001

Avocados, Pan (Kb) and Crop Coefficient (Kc)

MES	Proposed Kb	Proposed Kc
JANUARY	0,75	0,72 - 0,75
FEBRUARY	0,80	0,72 - 0,75
MARCH	0,85	0,72 - 0,75
APRIL	0,95	0,72 - 0,75
MAY	0,95	0,72
JUNE	1,10	0,72
JULY	1,20	0,72
AUGUST	1,10	0,72
SEPTEMBER	1,00	0,72
OCTOBER	0,80	0,72
NOVEMBER	0,80	0,72 - 0,75
DECEMBER	0,75	0,72 - 0,75

Gardiazabal et al., 2003

Methods to measure water Status in Soil and Tree

Tensiometers

- -25 to -35 Kpa before irrigating.
- Manually inspecting the Soil.

• Neutron Probes.

- Difficult calibration due to high soil variability.

• LVDT dendrometers.

 Until now measures are difficult to use as irrigation scheduling tool, as they do not integrate water content in the soil.

Pressure Chamber

- Still under research.

Irrigation Frequency

- Two main trends in Chile today.
 Pulse irrigation (+20 pulses per day).
 Low frequency irrigation (2 or 3 times/week in
 - summer).

EVALUATION OF PULSE IRRIGATION AND THE USE OF DENDROMETERS TO INCREASE PRODUCTIVITY IN AVOCADOS

• TREATMENTS:

- 7 pulses per day (drippers)
- 3 pulses per day (drippers)
- 1 pulses per day (drippers)
- Control Micro sprinklers (1/3 of available water consumed)

• INSTRUMENTS:

- Tensiometers
- Dendrometers
- Weather Station
- Pressure Chamber

- MESUREMENTS:
 - Vegetative growth
 - Root growth
 - Contraction and expansion of trunk
 - Fruit growth
 - Water potential in leaves
 - Yield
 - Fruit Size

Trunk Growth per treatment during November 2003-August 2004.

GAMA – CORFO 2004

Results of Pulse irrigation after 2 years

Treatment	Kg/tree 2003	Fruits/tree 2003	Fruit weight 2003	Kg/tree 2004	Fruits/tree 2004	Fruit weight 2004
Micro Sprinkler	69,6 a	385 a	186,7	79,7 a	470 a	174,3 a
3 pulses/day	70,3 a	398 a	181,8	81,3 a	524 a	162,2 b
7 pulses/day	61.3 ab	352 ab	184.8	59.8 b	368 b	168.5 a
1 pulse/day	43.9 b	246 b	180.3	71.7 ab	518 a	139.8 c

GAMA – CORFO, 2004

Size distribution in Kilos and % per Treatment October 2004.

Treatment	Kilos & (%)					
	40	50	60	70	Precalibre	
Micro Sprinkler	11 (0,4)	750 (23,9)	1019 (32,5)	974 (31,1)	381 (12,1)	
3 pulses/day	11 (0,4)	370 (13,4)	728 (23,6)	1131 (40,9)	526 (19,0)	
7 pulses/day	56 (2,5)	515 (22,5)	638 (27,9)	750 (32,8)	325 (14,2)	
1 pulse/day	0 (0)	123 (4,8)	493 (19,3)	1176 (46,1)	762 (29,8)	

GAMA - CORFO 2004

Strategies to Face The Challenge

- Understanding the Crop (Phenology)
- ☑ Irrigation
- ☑ Nutrition

Nitrogen

- After Lovatt, 2001 results: 3 main application times.
- 150 250 Kilos of N per hectare

Timing:

• April – May:

- End of 2nd vegetative flush and flower initiation.

• October:

30 - 40%

40%

- Full flowering
- January:
 Rapid fruit growth

20-30%

Other nutrients

- Potassium & Phosphorous: – Mostly no effect.
 Zinc & Boron :
 - A very common problem, applied every year.

Strategies to Face The Challenge

- Understanding the Crop (Phenology)
- ☑ Irrigation
- ☑ Nutrition
- Pruning

Pruning

- Today pruning is a common practice among growers.
- The questions today are:
 - How to prune based on the orchard situation.
 - When to prune.
 - What to do with the regrowth.
- Two main Situations:
 - Old overcrowded orchards.
 - New orchards designed for pruning.

Old Orchards and Overcrowded Orchards

Overcrowded Orchards

- Smaller fruit.
- Lower Yields.
- Higher susceptibility to root rot
- Higher salinity damage.
- Higher picking costs and risks.

AÑO 2

End of Summer

Spring

High Density Orchards

Pruning High Density Orchards

- New Orchards planted on rectangular pattern.
- Pruning starts before shading becomes a problem.
- Trees are formed in a pine shape.
- If pruning is light is commonly done at the end of summer to let autumn lower temperatures control the response of the new re-growth.

Strategies to Face The Challenge

- Understanding the Crop (Phenology)
- ☑ Irrigation
- ☑ Nutrition
- Pruning
- Pollination

Pollination

• Pollinators:

- \blacksquare The use of bees is very common.
- ☑ 8 10 hives/hectare
- Increasingly higher concern on Quality of the hives.
- \boxdot Weeds as pollen source for the hive.

Pollenizers

- ☑ Edranol the most common.
- \boxdot 5 to 11% of pollenizers.
- Ettinger and different combinations are under research.

Cross pollination in Hass

% of Parental pollen

Treatment	Hass	Zutano	Rincon	Edranol	Bacon
Hass Control	21,6	16,8	2,6	32,1	26,9
Hass/Hass	35,5	11,6	2,3	18,5	32,1
Hass/Rincon	15,3	30,8	10,1	19,9	23,9
Hass/Edranol	7,7	2,2	0,4	76,9	12,8
Hass/Zutano	2,6	74,1	3,1	1,9	18,4
Hass/Bacon	16,3	12,1	3,9	15,3	52,5

Gardiazabal & Gandolfo, 1995

Strategies to Face The Challenge

- Understanding the Crop (Phenology)
- ☑ Irrigation
- ☑ Nutrition
- Pruning
- ☑ Pollination

☑ Orchard Planning & High Densities

Orchard Planning

- Highest percentage of new plantations are on hillsides (+70% of new developments).
- Many times soils are shallow or not very uniform and trees are planted on ridges.
- Under these conditions roads play a fundamental role in operational effectiveness and prevention of erosion.

High Densities (1)

Main Objectives:

- Higher production the first years.
- Lower operation costs.
- Quick return of investment.
- Easier "Mechanization" (Depending on slope).

High Densities (2)

- Today the most common densities range from 555 to 832 trees/ha (6 x 3 – 6 x 2 m)
- Root competition is used to maintain tree size.
- Pyramidal Hedgerows.
- Orchards designed for pruning.

Ultra High Densities

- System developed in California by Reuben Hofshi.
- Pruning is required since the first year
- Trees trained in Cylindrical shape.
- In the past 2 years, probably more than 1.000 hectares have been planted at 3 x 3 m (1.111 trees/ha).

Conclusions

- Important growth.
- Under today's scenario yield is not the main factor anymore.
- Fruit size and operational costs play a fundamental role in final results.
- Understanding the phenology is essential in Orchard management and technical decisions.

