Invasive Ambrosia Beetle Conference The Situation in California August 12 - 14, 2012

Meeting sponsored by:
The Hofshi Foundation
University of California, Riverside
UC Center for Invasive Pest Research
The Huntington Botanical Gardens
The Los Angeles Arboretum

Invasive Ambrosia Beetle Conference The Situation in California August 12 - 14, 2012

Session 6
Invasion Epidemiology

Ecological analysis of native and exotic ambrosia beetles in the U.S.

Implications for pest management

Tom Atkinson

University of Texas at Austin

thatkinson.austin@gmail.com

Who says ambrosia beetles breed in dead trees?

- Tree "death" or "health" not discrete events
- Bark and ambrosia beetles both occupy transition zone between live and recently dead
- Important consideration is fresh (undegraded)
- >3,500 species of ambrosia beetles
- Spectrum of host interactions from obligate requirement for living hosts to near saprophytes
- Colonization of living host <> host death

Who says ambrosia beetles breed in dead trees?

- Shift from phloem feeding to ambrosial feeding
 - Loss of host specificity (freedom of choice)
 - Host defenses seem to be very important in maintaining host specificity in phloem feeders
 - Fungus becomes intermediary between beetle and host defenses
 - Overcome small piece of host, not entire host

Who says ambrosia beetles breed in dead trees?

- Peaceful coexistence in natural settings between hosts and ambrosia beetles may be much more common than suspected
- How many of the >3500 species are flying under the radar
- In pest situations there are many factors out of balance

Corthylus fuscus in pear

Corthylus fuscus in pear

Xylosandrus compactus in dogwood

Alternative model

- Discrete limited breeding in susceptible hosts
- Non-pathogenic or weakly pathogenic fungi
- Host recovers, can maintain certain parasite load
- Examples shown in branches, but other cases known from large trunks (Corthylus columbianus, Xyleborus voychisiae)

The Urban Forest

Conclusions

- Southern California is mostly poor habitat for ambrosia beetles
 - True for natives as well as exotics
- The predominant habitat for exotic ambrosia beetles in southern California is the urban forest
- Community and regional ecology of exotic ambrosia beetles within the region will be fundamentally different from that in the eastern and southeastern U.S.
- This will have important implications for management and control

Western Ambrosia Beetles (natives)

- Restricted to moist and/or high elevation forests
- Mostly host specific (pines, oaks, firs)
- Historically absent from largest urban areas
- Relatively little spread into urban areas (except oak-breeding species)

Treptoplatypus wilsoni

Xyleborus intrusus

Western Trypodendron spp. (3)

Western Gnathotrichus spp. (3)

Western Monarthrum spp. (2)

Eastern Ambrosia Beetles (natives)

- Widely distributed throughout region
- Mix of host generalists / specialists
- Abundant in urban areas as long as hosts and required conditions met

Eastern Monarthrum spp. (2)

Eastern vs. Western Ambrosia Beetles

Native: 11

Exotic:

Total: 15 Native: 28

Exotic: 16

Total: 44

East vs. West

- Native faunas drawn from same pool of genera
 - Differences long standing, based on long term climatic differences
- Comparisons among different regions shows that high humidity (low moisture deficit) is positively related to species richness of ambrosia beetles.
- Differences of same relative magnitude (2.5 X) for both natives and exotics
- Most exotics are from eastern Asia (Eurasian)
 - Magnitude of Asian trade at west coast ports suggests that actual rate of introduction would be similar to that on east coast
 - Difference is rate of establishment
- Same factors acting today as historically

Xyleborinus saxeseni (exotic)

Monarthrum mali (eastern U.S.)

Exotic species

- Western U.S.
 - More likely to be found in urban and agricultural settings
 - Unclear how successful at invading natural plant communities
- Eastern U.S.
 - Exotics are abundant in communities regardless of degree of disturbance

Euwallacea in southern California

Known Distribution of Fusarium Dieback/Shot Hole Borer in Southern California 07/27/2012

Data source: University of California, Riverside. Department of Plant Pathology and Microbiology. 900 University Ave. Riverside, CA. http://www.eskalenlab.ucr.edu

Commercial avocado production

Euwallacea and significant habitats

Pest Management Aspects

- Euwallacea will probably require areas with irrigation and closed canopy
- Primary pest reservoir will be irrigated urban forest or tree crops with similar conditions
- Given wide host range largest public perception will be as a pest of trees (fruiting or otherwise) in landscape.
 - Additional source of observers (interested parties)
 - Additional source of support?

Conclusions

- Southern California is mostly poor habitat for ambrosia beetles
 - True for natives as well as exotics
- The predominant habitat for exotic ambrosia beetles in southern California is the urban forest
- Community and regional ecology of exotic ambrosia beetles within the region will be fundamentally different from that in the eastern and southeastern U.S.
- This will have important implications for management and control

Real Time Tracking and Geographic

Bark and Ambrosia Beetles of the U.S. & Canada

Analysis

Real Time Tracking and Geographic Analysis

- Establish and maintain web based database showing:
 - Survey results
 - Positive, negative, insect, fungus, disease
 - Trap catches (positive & negative)
 - Museum specimens
 - Location of significant landscape and ecological features
 - Commercial avocados
 - Other susceptible tree crops
 - Elevation
 - 555
 - Public and restricted access
 - UCR as lead host
 - Logos of other participating institutions
 - Any participating institution can link to page and incorporate into menus

Real Time Tracking and Geographic Analysis

- Unless someone else wants it I would volunteer to coordinate and maintain site
- No direct user input.
 - Expensive and tricky to program
 - data vulnerable
 - quality control issues
- Users submit data to coordinator who then posts
 - Original database not online, not vulnerable
 - Consistency check

Real Time Tracking and Geographic Analysis

- What's in it for me?
 - Unique chance to track spread of exotic species
 - Co-authorship on eventual article on distribution and spread
 - Might include data from other species of ambrosia beetles from region

Acknowledgements

- Tom Bellamore, Gwen Peterson; California Avocado Commission for map of avocado production
- Akif Eskalen, UCR for survey map
- The North American Land Change Monitoring System (NALCMS) for vegetation cover map.

