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Losses in the production of avocado (Persea americana (Mill.)) are incurred due to Phytophthora root rot (PRR), a
disease of the feeder roots that results in tree-dieback and eventual tree death. Avocado is also a flood-sensitive
species and flooding exacerbates the effects of PRR. The avocado industry relies on the use of rootstocks tolerant
to PRR tominimise losses. The present study compared the gas exchange and chlorophyll fluorescence responses
of avocado rootstock plants of ‘Dusa™’, the current South African industry standard, with ‘Duke 7’, and the
selections R0.12 andR0.06which show reduced and superior tolerance to PRR, respectively. A decline in stomatal
conductance (gs) and net CO2 assimilation (PN) over the 30 day evaluation period were early responses to
flooding. ‘Dusa™’, the more tolerant rootstock plants, demonstrated a better recovery in PN and gs in response
to inoculation; however, both rootstocks performed poorly under flooded conditions. A decline in PN in infected
‘Duke7’ plants appeared to be associatedwith stomatal limitations due to reduced stomatal conductance. The de-
cline in PN and gs was not apparent in infected ‘Dusa™’ plants. Non-stomatal limitations to PN in rootstock plants
exposed to flooding were also evident as indicated by increases in the ratio of internal to atmospheric CO2 con-
centrations (Ci/Ca). Impaired photosynthetic capacity in flooded rootstock plants was reflected by reduced pho-
tosystem II efficiency and photochemical quenching. In comparison to ‘Dusa™’, R0.12 rootstock plants showed
reduced PN and gs following inoculationwith Phytophthora cinnamomiwhereas themore tolerant R0.06 rootstock
plants revealed sustained photosynthetic activity. Interestingly R0.06 was the only rootstock able to maintain PN
and gs in non-inoculated, flooded plants.

© 2014 SAAB. Published by Elsevier B.V. All rights reserved.
1. Introduction

Avocado (Persea americanaMill.) is a commercially valuable tropical
and subtropical fruit tree belonging to the Lauraceae family (Bergh and
Ellstrand, 1986). World production of avocado was estimated at over
4.36 million tonnes in 2012, with South Africa contributing substantial-
ly as an exporter (http://faostat.fao.org). Phytophthora root rot (PRR) is
a disease of the fine feeder roots of avocado and is the most limiting
disease to avocado production worldwide (Coffey, 1987; Pegg et al.,
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2002; Zentmeyer, 1984). The soil-borne oomycete, Phytophthora
cinnamomi, is the causal agent of PRR, and infection with this pathogen
results in the feeder roots becomingbrittle and turning black, as the root
tissue decays. This restricts water and nutrient uptake by the trees and
leads to branch-dieback and eventual tree death. P. cinnamomi occurs
globally and has a broad host range exceeding 1000 plant species
(Hardham, 2005; Zentmeyer, 1980), which along with the production
of resilient oospores, contributes to its persistence in soils. Control strat-
egies include phosphonate trunk injections, development and use of tol-
erant rootstocks, and proper orchard management practices (Coffey,
1987), including use of pathogen-free material and prudent irrigation
scheduling. Irrigation and soil water content are particularly important
factors to consider when avocados are grown in the presence of
P. cinnamomi, as the effects of PRR can be exacerbated in wet soils
(Ploetz and Schaffer, 1989).

Waterlogged or flooded soils may result from high rainfall, river
overflow, elevatedwater tables, inadequate drainage and improper irri-
gation management (Colmer and Voesenek, 2009; Pandey et al., 2010).
Avocado trees are sensitive to flooding and decreases in growth and
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yield, nutrient deficiencies, branch-dieback, and tree death may result
in flooded or poorly drained soils (Schaffer et al., 1992). Other effects in-
clude growth reductions, premature senescence and leaf abscission,
root decay, reduced photosynthetic ability, and lowered enzyme effi-
ciencies (Davies and Flore, 1986; Fleischmann et al., 2002). Insufficient
oxygen availability to the roots under waterlogged conditions is partly
responsible for reductions in growth and yield (Davies and Flore,
1986; Oosterhuis et al., 1990) and the amplified effects ofmany diseases
(Stolzy and Sojka, 1984). The increased severity of root rots, caused by
Phytophthora spp. in particular, has been noted in flooded plants
(Ploetz and Schaffer, 1989).

The effects of flooding on infection of avocados with P. cinnamomi
have been described by Wager (1942) who noted that even transient
flooding results in root rot that causes plants to wilt and die. Avocado
trees that are flooded in the presence of P. cinnamomi have been ob-
served to succumb much more rapidly than trees that are flooded in
the absence of P. cinnamomi, with significant reductions in CO2 assimila-
tion (PN), stomatal conductance (gs), and transpiration (E) (Ploetz and
Schaffer, 1989; Schaffer and Ploetz, 1989; Wager, 1942). However, this
is also dependent on both the physical and chemical properties of the
soil, as in fine textured soils,which are poorly drained andhave a greater
proportion of micropores, avocados can succumb so rapidly to flooding
that the presence of PRR has limited impact. The increased damage
caused by PRR under flood conditions has been ascribed to an increase
in zoosporemotility, which leads to an enhanced ability of the oomycete
to infect roots (Kenerley et al., 1984; Robin et al., 2001). It may also be
due to an increase in the susceptibility of the plant to infection under
conditions of low oxygen caused by flooding (Schoeneweiss, 1975),
changes in soil chemistry, enhanced pathogen activity, or a combination
of these factors.

Development and selection of rootstocks showing tolerance to PRR
are integral parts of managing the disease and are on-going processes.
Selections assessing additional traits, such as tolerance to flooding,
will be an important aspect in improving tree performance and longev-
ity in areas prone to waterlogging. At present, flood tolerance is not
assessed when selecting new rootstocks. Rootstock selection is a
lengthy and tedious process and the use of physiologicalmarkers for de-
sirable traits could improve this process. An understanding of the phys-
iological response of avocado rootstocks to flooding and infection will
aid in the development of such markers for tolerance to PRR and
flooding. These markers will make the selection process more effi-
cient and possibly result in selection of rootstocks showing tolerance
to both traits. In this study we assessed the phenotypic response of
the industry standard ‘Dusa™’ rootstock to inoculation with
P. cinnamomi and flooding by comparing it first to the previous in-
dustry standard ‘Duke 7’ rootstock in a glasshouse and subsequently
by comparing it in a shadehouse trial to a rootstock less tolerant to
PRR (R0.12) and a rootstock recently selected for superior tolerance
to PRR (R0.06). To date there have been no studies assessing the re-
sponse of ‘Dusa™’ rootstocks to infection and flooding. The aim was
to investigate whether rootstocks showing high tolerance to PRR
would maintain this tolerance when infection was experienced in
combination with flooding. In addition the tolerance to flooding of
PRR tolerant rootstocks was also assessed.

Two trials evaluating a number of physiological parameters, includ-
ing leaf gas exchange, stomatal conductance, and chlorophyll fluores-
cence parameters, were carried out to determine the onset of stress
and the impact of flooding and infection by P. cinnamomi on these pa-
rameters. Whilst reduced PN and gs are known early responses to
flooding there is still some uncertainty as to whether PN is reduced as
a result of stomatal closure or due to non-stomatal limitations that are
related to the biochemical reactions of photosynthesis (Gimeno et al.,
2012; Schaffer et al., 1992). In addition, it is important to determine if
these changes in photosynthetic parameters occur prior to the onset
of visible symptoms of stress, as thiswould be importantwhen develop-
ing physiological markers to be used in selection programmes.
2. Materials and methods

2.1. P. cinnamomi isolates and inoculation

P. cinnamomi was isolated from declining avocado orchards in
Tzaneen, South Africa. Isolation was performed using the method de-
scribed by Christie (2012); however, nystatin was used instead of
pimaricin. Long-term stocks were stored in autoclaved, distilled H2O
(dH2O) with a blade of grass. Cultures were grown on V8 agar (20%
V8 juice (v:v), 0.25% CaCO3, agar 17 g l−1) and kept in the dark at
20 °C. Plants in the first trial were inoculated using only zoospores,
whilst plants in the second trial were inoculated using both zoospores
and mycelia. Zoospore production was carried out according to the
method described in Christie (2012) and involved placing blocks of
colonised V8 into 2% V8 broth until sufficient mycelial growth was evi-
dent (usually 3 days). Mycelial blocks were then rinsed three times
with dH2O to remove all V8 broth. Stream water was used to aid in
the induction of sporangia as it provides bothminerals and othermicro-
organisms, both of which are known to aid sporangia development
(Chee and Newhook, 1966; Chen and Zentmyer, 1970). Stream water
was filtered twice and poured into 90 mm petri dishes. Mycelial plugs
were then placed in plates and left under UV light for 2–3 days to induce
sporangia formation. Once sufficient sporangia formation was observed
cultures were cold-shocked at 4 °C for 45 min. Cultures were then left
on the bench at room temperature for 1 h to allow zoospore release. In-
fection was carried out as soon as sufficient release was observed to en-
sure motility of zoospores. Plants were inoculated with 50 ml/plant of a
zoospore suspension (2.5 × 104 zoospores/ml and 3 × 104 zoospores/ml
for the glasshouse and shadehouse trials, respectively) by pouring the
suspension directly into the potting medium alongside the stem.
Mycelia, used in the shadehouse trial, were homogenised using a blender
and poured into the potting medium (25 ml/plant). Infection was con-
firmed by re-isolation of the pathogen and subsequent use of the
P. cinnamomi specific LPV3 forward (5′-GAA CCA CAA CAG GCA CGT-3′)
and LPV3 reverse (5′-GTG CAG ACT GTC CAT GTG-3′) primers (Kong
et al., 2003) in a polymerase chain reaction (PCR).

2.2. Plant material

No scions were grafted onto any of the rootstocks and shoots were
derived from the respective rootstocks. Measurements thus reflect the
photosynthetic and chlorophyll fluorescence responses in shoots of
non-grafted avocado rootstocks. Plants of each rootstock were divided
into four treatments: control plants, infected plants, flooded plants,
and plants that were both infected and flooded (combined stress). Con-
trol plants were neither infected nor flooded. At the end of both trials
P. cinnamomi was successfully re-isolated from inoculated plants and
was found to be absent in non-inoculated plants, confirming that
there was no P. cinnamomi present in the soil before inoculation. Re-
isolations of the pathogen were done from at least three plants per
treatment, per rootstock.

2.2.1. Glasshouse trial
One year-old clonal PRR tolerant ‘Dusa™’ (highly tolerant) and ‘Duke

7’ (tolerant) avocado plants were used. After the removal of the nurse
seed, plants were replanted into 2 l containers containing a soil-perlite
mix (1:1, v:v) and allowed to acclimatise for 3 months in a greenhouse
at the Forestry and Agricultural Biotechnology Institute (FABI), Pretoria,
South Africa (25° 45′ 19.80″ S 28° 14′ 7.59″ E), before the experiment
commenced. Soil was verified to be free of P. cinnamomi before use. Sodi-
um and mercury lamps supplemented natural light between 6 a.m. and
6 p.m., ensuring a 12 hour photoperiod. Plants were watered 3–4 times
a week and 50 ml Hoagland's solution (Hoagland and Arnon, 1950)
was used to supply nutrients once a week. Flooding was carried out by
filling plastic reservoirs (45 cm × 65 cm), each containing 10–15 plants,
with tap water to 1 cm above the potting mixture and was commenced
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oneweek after inoculationwith P. cinnamomi in order to allow establish-
ment of infection. Inoculated plants were kept in separate reservoirs
from non-inoculated plants.

2.2.2. Shadehouse trial
Responses of one year-old clonal plants of three avocado rootstocks,

R0.12 (less tolerant), ‘Dusa™’ (highly tolerant), and R0.06 (highly toler-
ant), to infection and flooding were assessed. Nurse seeds were re-
moved and plants were replanted in 10 l bags filled to 50% capacity
with a bark-chip:soil mix (2:1, v:v). Soil was steam-sterilised to exclude
soil microbes. Plants were allowed to acclimatise for 2 months in a 50%
light exclusion shadehouse at the Hatfield Experimental Farm (Univer-
sity of Pretoria, 25° 47′ 7.38″ S 28° 15′ 30.44″ E) before experiments
commenced. Plants were irrigated with water supplemented with
Hygroponic (1 g l−1, Hygrotech) and Solu-Cal (0.7 g l−1, Hygrotech)
twice daily for 5 min. Flooding was commenced 18 days post-infection
(dpi) by filling plastic reservoirs (diameter = 30 cm) each containing
a single plant with tap water to 1 cm above the potting mixture. Plants
were drained after 14 days of flooding in order to assess possible recov-
ery from stress.

2.3. Gas exchange and chlorophyll fluorescence measurements

Leaf temperature and photosynthetic photon flux density (PPFD) in-
cident on the leaf surface were measured with a thermocouple in the
leaf chamber and a Li-190SA quantum sensor (LI-COR), respectively.
Gas exchange and chlorophyll fluorescencemeasurementswere carried
out on the third fully expanded leaf from the apex of each plant using an
open-path portable photosynthesis system (LI-6400XT, LI-COR). Fluo-
rescence measurements were performed using the 6400-40 leaf cham-
ber pulse amplitude modulated fluorometer attached to the LI-6400XT.
Steady-state fluorescence (Fs) was monitored to ensure that steady-
state conditions were achieved before each measurement. Maximal
fluorescence under light-adapted conditions (F′m) was obtained by re-
ducing all photosystem II (PSII) reaction centres by using a 1 s saturating
flash. Maximal fluorescence (Fm) and minimal fluorescence (Fo) mea-
surements were taken after dark-adapting the leaves for 30 min using
aluminium foil. Minimal light-adapted fluorescence (F′o) was deter-
mined by using far-red light (6 s) to excite PSI and force electrons to
drain from PSII. Maximum quantum yield of photosystem II was de-
fined as Fm − Fo/Fm or Fv/Fm. Non-photochemical quenching (NPQ)
was defined as Fm − Fm'/Fm' and photochemical quenching (qP) as
(Fm' − Fs)/(Fm' − Fo'). Actual light-harvesting efficiency (ΦPSII)
was calculated as Fm' − Fs/Fm'. The electron transport rate was de-
fined as (Fm'− Fs/Fm')fIαleaf, where f is the fraction of absorbed quan-
ta that is used by PSII, which is assumed to be 0.5, I is the incident
radiant flux density (μmol m−2 s−1) and αleaf is leaf absorptance, cal-
culated as a function of the fraction of blue light and kept constant
for the avocado leaves at 0.8749.

2.3.1. Glasshouse trial
Average daily maximum temperature during the experimental peri-

odwas 24.9 °C, with an average daily minimum temperature of 13.9 °C.
Incoming solar radiation (measured by an automatic weather station)
was very variable during the experimental period (varying from 6.7 to
42.8 MJ m−2 day−1, with an average daily solar radiation of
29.08 MJ m−2 day−1) and an average of 115 μmol m−2 s−1 and a max-
imumof 600 μmolm−2 s−1 photosynthetically active radiation (PAR) in
the greenhouse over the course of the experiment. The low light levels
were caused by overcast conditions during the experimental period;
however, PAR levels still exceeded the light compensation point of
container-grown avocado (63 μmol m−2 s−1) as reported by
Scholefield et al. (1980).

Gas exchange and chlorophyll fluorescence measurements were
taken over a 30 day period; however, the measurements for ‘Duke 7’
ended at 26 dpi due to plant death. Gas exchange measurements were
performed on 10 replicates (where one replicate corresponds to one
tree) per treatment and fluorescence measurements on 5 replicates
per treatment. Humidity within the chamber was held between 40
and 50% and leaf temperature varied between 23 and 28 °C. The refer-
ence CO2 concentration was set at 500 μmol CO2 mol−1, the flow rate
was set at 500 μmol s−1 and the quantumflux densitywithin the cham-
ber was set at 300 μmol m−2 s−1. These conditions were set according
to the prevailing conditions within the glasshouse. Measurements of
leaf CO2 assimilation (PN), transpiration (E), stomatal conductance
(gs), and intercellular CO2 concentration (Ci) were measured simulta-
neously every third day. Fluorescence measurements were measured
the day after gas exchange measurements.

2.3.2. Shadehouse trial
The average daily maximum temperature in the shadehouse was

22.8 °C and the average daily minimum temperature was 5.5 °C. Aver-
age incoming solar radiation during the experimental period was
11.24 MJ m−2 day−1 and ranged from 8.37 to 13.04 MJ m−2 day−1.
PAR averaged 291.8 μmol m−2 s−1 over the experimental period with
a maximum of 844.4 μmol m−2 s−1. Gas exchange measurements
were performed on 8 replicates (per treatment per rootstock) over a
46 day period, commencing three days after inoculation. Fluorescence
measurements were taken from the day before flooding commenced
over a period of 32 days until the trial ended. Fluorescence measure-
ments were performed on 5 replicates per treatment per rootstock. Hu-
midity within the sample chamber ranged from 30 to 70% over the
experimental period and leaf temperature varied between 11 and
26 °C. The reference CO2 concentration was set at 400 μmol CO2 mol−1,
the flow rate was set at 500 μmol s−1 and the quantum flux density
was adjusted according to daily conditions in the shadehouse and ranged
from 500 to 800 μmol m−2 s−1. Gas exchange parameters (PN, E, gs, Ci)
were measured in the morning and fluorescence measurements were
taken thereafter on the same day.

2.4. Plant disease rating

At the termination of each trial stem length was measured and leaf
number was counted. Roots, stems and leaves were separated and
dried at 70 °C for 3 days for the determination of dry mass. Relative
water content (RWC) was calculated on a fresh mass basis ((fresh
mass − dry mass) / fresh mass). Plant health was also visually rated
at the end of the trial according to the Ciba–Geigy scale (Darvas et al.,
1984). This rating was based on the assignment of a number from
zero to 10 for each plant, with zero being healthy and 10 being dead
(Darvas et al., 1984). Plants that were rated as healthy showed no
signs of wilting or defoliation and root systems were vigorous. Dead
plants showed no green tissue when the surface of the stem was
scratched and leaves were either absent or dried out. These measure-
ments were performed on a minimum of six plants per treatment, per
rootstock.

2.5. Experimental design and statistical analysis

The experiments were laid out in randomised block designs, with
four treatments per rootstock and 10–20 plants per treatment. Data
are mean values of 6–10 plants for photosynthesis and 3–5 plants for
chlorophyll fluorescence measurements. Statistical analysis was per-
formed using JMP® 10.0.0 (SAS Institute Inc.) and GraphPad Prism
6.03 (GraphPad Software Inc.). Results are presented as means ± SD.
Significance was assessed using analysis of variance (ANOVA) followed
by analysis of means using Tukey's test (P≤ 0.05). Interaction between
flooding and infection was assessed using a two-way ANOVA. Initial
two-way ANOVA analysis was performed to test if there was a signifi-
cant interaction between rootstocks and treatments. Significant interac-
tions (P = 0.0012) were found and rootstocks were thus further
analysed separately.
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3. Results

3.1. Plant disease rating

P. cinnamomiwas re-isolated from inoculated trees in both trials, but
not from non-inoculated trees. Pathogen identity was subsequently
confirmed using the species specific LPV3 primers.
Fig. 2. Plant disease rating as determined according to the Ciba–Geigy scale. The two trials
are separated by a dotted line. Rating ranges from 0 (healthy) to 10 (dead).
3.1.1. Glasshouse trial
Classical symptoms of flooding stress were first visible in ‘Duke 7’

plants 10 days after flooding (17 dpi), which manifested as leaf wilting
and by 15 days post-flooding (22 dpi) severe signs of wilt were visible.
This wilting was more severe in plants in the combined stress treat-
ment. Severalflooded ‘Duke7’ infected plantswere dead at the termina-
tion of the trial, whilst the uninfected, flooded plants were all wilted.
Wilting was only observed in flooded ‘Dusa™’ plants 16 days after the
initiation of flooding (23 dpi) and approximately half of the ‘Dusa™’

plants experiencing the combination of stresses were wilted at the
end of the trial.

Flooded treatments of both rootstocks performed poorly regardless
of whether they were infected or not (Figs. 1 and 2) and leaf wilting
and desiccation were apparent in the combined stress treatments in
both rootstocks, but absent in plants that were inoculated but not
flooded. Plants were visually rated in order to assess their health at
the end of the trial (Fig. 2). The plants subjected to the combined stress
had slightly higher disease ratings than uninfected flooded plants,
whilst infected, non-flooded plants of both rootstocks had ratings simi-
lar to control plants (Fig. 2). In general the non-flooded plants appeared
the healthiest by the end of the trial, whilst flooded treatments either
displayed severe signs of stress (Fig. 1) or were dead. Root health was
also assessed during disease rating and plants of both rootstocks had
black and brittle roots when exposed to a combination of infection
and flooding (Fig. 1). Infected plants that were not flooded had much
healthier root systems than the flooded and infected plants and only a
few roots exhibited the classic brown discolouration and brittleness as-
sociatedwith PRR. Roots fromplants thatwere flooded in the absence of
P. cinnamomi were discoloured but were not brittle.

Biomass was determined and no significant differences were found
between treatments for either rootstock in terms of stem length or
Fig. 1. Effects of Phytophthora cinnamomi and flooding on ‘Duke 7’ avocado plants. Healthy cont
biomass, leaf biomass, relative water content (RWC) or total biomass
(Table 1). Root biomass was significantly reduced in flooded ‘Duke 7’
plants when compared to control plants and reductions in infected
and flooded and infected plants were also noticeable, but these differ-
ences were not significant (Table 1). The root:shoot ratio in ‘Duke 7’
plants was also found to be reduced in flooded, infected, and flooded
and infected plants, with significant reductions seen when non-
flooded, infected plants and flooded, uninfected plants were compared
to control plants. No significant differences were found between treat-
ments in ‘Dusa™’.

3.1.2. Shadehouse trials
In this trial plants were flooded for two weeks, following this the

water was drained from the 10 l bags and possible recovery from
flooding stress was assessed. Typical symptoms of flooding stress,
such as wilting, became apparent in flooded ‘Dusa™’ plants 13 days
after flooding (31 dpi), with plants that were also infected displaying
more severe wilting. Non-flooded, infected plants looked similar to
rol plants (A), flooded plants (B), infected plants (C), and flooded and infected plants (D).

image of Fig.�2


Table 1
Mean drymass (g ± SE) of leaf, stem and root tissue, total biomass, the root/shoot drymass ratio (R:S) and the relativewater content (RWC) of clonal avocado rootstocks from the glass-
house trial.

Variable Rootstock Uninfected Infected

Flooded Non-flooded
(control)

Flooded Non-flooded

Leaf (g) ‘Dusa™’ 5.36 ± 2.77a 5.66 ± 0.61a 2.88 ± 0.53a 3.30 ± 0.39a
Stem (g) 5.35 ± 1.77a 5.52 ± 0.76a 4.07 ± 0.48a 4.49 ± 0.58a
Root (g) 2.50 ± 1.23a 2.86 ± 0.39a 2.05 ± 0.45a 3.23 ± 0.57a
R:S 0.22 ± 0.02a 0.26 ± 0.02a 0.27 ± 0.05a 0.41 ± 0.06a
RWC 0.70 ± 0.03a 0.74 ± 0.03a 0.71 ± 0.03a 0.74 ± 0.06a
Total (g) 13.20 ± 5.66a 14.04 ± 1.63a 9.00 ± 1.11a 11.02 ± 1.31a
Leaf (g) ‘Duke 7’ 3.18 ± 0.35a 3.68 ± 0.37a 4.38 ± 0.47a 4.29 ± 0.31a
Stem (g) 4.14 ± 0.40a 5.54 ± 0.44a 4.99 ± 0.44a 5.40 ± 0.27a
Root (g) 1.20 ± 0.15b 2.54 ± 0.27a 1.84 ± 0.26ab 1.82 ± 0.17ab
R:S 0.17 ± 0.02b 0.28 ± 0.03a 0.20 ± 0.03ab 0.19 ± 0.02b
RWC 0.70 ± 0.01a 0.74 ± 0.01a 0.70 ± 0.02a 0.71 ± 0.01a
Total (g) 8.52 ± 0.80a 11.76 ± 1.00a 11.21 ± 0.81a 11.52 ± 0.58a

Values not sharing a common letter within a row differ at P b 0.05. Rows without letters indicate that differences were not significant.
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control plants. At this time R0.12 and R0.06 flooded plants showed sim-
ilar responses, althoughwilting of the plants subjected to the combined
stress was more severe in both rootstocks than in ‘Dusa™’. Thirteen
days of flooding thus resulted in wilting in all three rootstocks; howev-
er, there were uninfected, flooded plants that were not yet showing
signs of wilt at this point. All infected and flooded plants in all three
rootstockswerewilted at this point, with themajority displaying severe
wilt.

In general, infected ‘Dusa™’ plants showed similar responses to con-
trol plants, whilst plants of both flooded treatments responded similar-
ly, which is very similar to results obtained in the glasshouse trial
(Fig. 2). The less tolerant R0.12 had higher disease ratings in all three
treatments when compared to controls. Flooded R0.12 plants obtained
ratings similar to infected plants, whilst plants that were both infected
and flooded had higher disease ratings than any other treatments. In
comparison, infected R0.06 plants showed responses similar to control
plants whilst flooded, uninfected plants showed a slight increase in dis-
ease rating compared to control plants (Fig. 2). However, the combina-
tion of flooding and infection resulted in higher disease ratings in these
plants, comparable to observationsmade for ‘Dusa™’, R0.12, and results
from the first trial (Fig. 2).
Table 2
Mean drymass (g ± SE) of leaf, stem, and root tissue, total biomass, the root/shoot dry ratio (R:
trial.

Variable Rootstock Uninfected

Flooded

Leaf (g) ‘Dusa™’ 5.61 ± 3.92a
Stem (g) 4.47 ± 2.64a
Root (g) 1.44 ± 0.74a
R:S 0.15 ± 0.04a
RWC 0.74 ± 0.04a
Total (g) 11.51 ± 7.23a
Leaf (g) ‘R0.12’ 7.02 ± 1.66a
Stem (g) 4.5 ± 1.09a
Root (g) 0.50 ± 0.22a
R:S 0.04 ± 0.02a
RWC 0.61 ± 0.07a
Total (g) 12.28 ± 2.28a
Leaf (g) ‘R0.06’ 12.39 ± 4.46a
Stem (g) 10.19 ± 3.87a
Root (g) 4.40 ± 3.49ab
R:S 0.18 ± 0.13a
RWC 0.58 ± 0.09a
Total (g) 30.43 ± 12.02a

Values not sharing a common letter within a row differ at P b 0.05. Rows without letters indic
No significant differences were found in any biomassmeasurements
for either ‘Dusa™’ or R0.12. The only significant differenceswere seen in
R0.06 flooded, infected plants which showed decreases in leaf, root, and
total biomass when compared to control and uninfected, flooded plants
(Table 2). In ‘Dusa™’ and R0.12 therewas a tendency for lower root bio-
mass in flooded treatmentswhen compared to non-flooded treatments.
In R0.06, however, infected treatments had lower root biomass than un-
infected treatments, with a significant reduction in flooded, infected
plants. Although differences were not significant, there was a tendency
for reduced root: shoot ratios in flooded treatments in all three root-
stocks. This is similar to results obtained for ‘Dusa™’ in the glasshouse
trial.

3.2. Gas exchange measurements

3.2.1. Glasshouse trial
Flooding was seen to induce changes in the gas exchange parame-

ters of both ‘Dusa™’ and ‘Duke 7’ clonal avocado plants, whether infect-
ed with P. cinnamomi or not (Fig. 3). Measurements for ‘Duke 7’ plants
ended at 26 dpi, as several plants died soon after this measurement,
whilst measurements of ‘Dusa™’ plants continued until 30 dpi (Fig. 3).
S) and the relativewater content (RWC) of clonal avocado rootstocks from the shadehouse

Infected

Non-flooded
(control)

Flooded Non-flooded

15.59 ± 11.32a 8.80 ± 2.77a 7.99 ± 4.01a
8.35 ± 3.10a 6.55 ± 2.42a 6.45 ± 1.33a
4.04 ± 1.71a 1.98 ± 0.74a 4.14 ± 2.12a
0.22 ± 0.08a 0.14 ± 0.05a 0.26 ± 0.13a
0.74 ± 0.02a 0.71 ± 0.05a 0.76 ± 0.05a

21.03 ± 9.24a 17.33 ± 5.31a 20.02 ± 4.07a
6.59 ± 3.73a 7.91 ± 6.30a 6.08 ± 4.48a
7.85 ± 3.39a 6.458 ± 2.8a 7.32 ± 2.62a
1.89 ± 1.41a 1.44 ± 1.542a 1.60 ± 1.50a
0.12 ± 0.11a 0.07 ± 0.041a 0.10 ± 0.13a
0.72 ± 0.03a 0.66 ± 0.06a 0.73 ± 0.081a

15.35 ± 5.72a 14.24 ± 10.64a 14.42 ± 7.28a
12.52 ± 2.29a 6.04 ± 1.87b 13.30 ± 3.54a
9.43 ± 1.63a 5.30 ± 1.53a 9.22 ± 2.75a
4.10 ± 1.50a 1.24 ± 0.76b 3.32 ± 0.62ab
0.19 ± 0.06a 0.14 ± 0.09a 0.15 ± 0.03a
0.74 ± 0.03a 0.69 ± 0.02a 0.69 ± 0.12a

26.56 ± 4.86ab 12.60 ± 2.68b 26.45 ± 6.48ab

ate that differences were not significant.



Fig. 3. Effects of Phytophthora cinnamomi and flooding on net photosynthesis (PN), transpiration (E), stomatal conductance (gs) and ratio of internal and atmospheric CO2 concentrations
(Ci/Ca) of ‘Dusa™’ and ‘Duke 7’ avocado rootstocks. Asterisks indicate significance (P b 0.05) with symbols to denote the treatment/s between which differences are significant; infected
and flooded (diamonds), infected (squares), flooded (triangles), control (circles). Flooding began at day 7 as indicated by the dotted line.
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Net CO2 assimilation (PN)was seen to be reducedbyflooding in both root-
stocks. In ‘Dusa™’ these reductions occurred earlier in plants subjected to
the combined stress and PN was almost zero (0.1 μmol CO2 m−2 s−1)
12 dpi (5 days after commencement of flooding) in these plants.
Although infected, non-flooded plants also showed reductions in PN at
this point, plants were able to recover and PN returned to levels seen
in control plants by the end of the trial. Flooded plants that were not
inoculated with P. cinnamomi exhibited increased values for PN up
until 15 dpi, after which they decreased to levels seen in the
combined stress treatment. These increased initial values were also
seen in ‘Duke 7’ flooded plants, which had the highest values for PN
up until 12 dpi (Fig. 3). Plants from the combined stress treatment did
not show these increases in either rootstock. Low light levels
(18 MJ m−2 day−1) 15 dpi, caused by cloudy conditions, are the most
likely cause of observed reductions in PN across all treatments in both
rootstocks. Whilst PN returned to similar levels measured prior to the
cloudy day in most of the ‘Dusa™’ treatments, a similar recovery in PN
was not observed in combined stress plants and these plants continued
to exhibit low PN values for the rest of the trial period, which were sig-
nificantly lower than PN in non-flooded plants (Fig. 3). Both flooded
‘Dusa™’ treatments exhibited reductions in PN that were significantly
reduced compared to control plants 22 dpi and from 26 dpi, until the
trial was terminated, PN in these plants was significantly reduced com-
pared to control and non-flooded, infected plants.

‘Duke 7’ plants that were flooded (with or without infection) could
not recover from the low light conditions experienced at 15 dpi and
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rates for PN remained low, with significant reductions observed for the
remainder of the experiment when compared to the control. Infected,
non-flooded ‘Duke 7’ plants showed increases in PN after 15 dpi, howev-
er, the rate of PN remained significantly (22 dpi, 26 dpi) lower than con-
trol plants. As seen in ‘Dusa™’, non-flooded ‘Duke 7’ plants exhibited
higher overall levels of PN when compared to the flooded treatments.
However, differences were evident between the responses of the two
rootstocks to infection alone. Infected ‘Dusa™’ plants were capable of
maintaining PN levels similar to control plants, whilst infected ‘Duke 7’
plants showed reductions in PN throughout the trial when compared
to control plants. Infected ‘Duke 7’ plants were also found to have
lower (P = 0.02) rates of PN at 26 dpi when compared to infected
‘Dusa’ plants.

Lower values for both gs and E were apparent 12 dpi in ‘Dusa™’ in-
fected plants (both flooded and non-flooded) when compared to unin-
fected treatments. The highest values for gs and E at this timepointwere
observed in flooded, uninfected ‘Dusa™’, as noted for PN. Similar results
were observed in ‘Duke 7’ plants; however, the peak in gs and E in
flooded, uninfected plants was observed earlier (8 dpi) than in ‘Dusa
™’ plants and by 12 dpi had declined again. This is consistent with the
peak in PN at 8 dpi in ‘Duke 7’ plants (Fig. 3). By 19 dpi plants of both
rootstocks exposed to the combined stress had significantly lower
values of gs and E than control plants. ‘Duke 7’ uninfected,flooded plants
and infected, non-flooded plants also showed reduced values at this
point. ‘Dusa™’ uninfected, flooded plants only showed reductions in gs
and E at 22 dpi. At this point flooded treatments of both rootstocks
were showing significant reductions in gs and E relative to non-
flooded treatments. Following an initial decline in gs and E in response
to infection (no flooding) both ‘Dusa™’ and ‘Duke 7’ plants displayed
some recovery from 19 dpi relative to the combined stress treatment.
By the end of the trial gs and E in infected ‘Dusa™’ plants had completely
recovered relative to the control. However, as observedwith PN, gs and E
did not return to control levels in infected ‘Duke 7’ plants (Fig. 3).

The Ci/Ca ratio of ‘Dusa™’ plants subjected to the combined stress ex-
hibited higher values than any other treatment from 12 dpi until the
end of the trial. Flooded plants displayed increases from 22 dpi, whilst
non-flooded infected plants and control plants had similar values
throughout the trial. ‘Duke 7’ plants exhibited a different trend from
‘Dusa™’ plants, as 15 dpi flooded and uninfected ‘Duke 7’ plants had
the highest Ci/Ca values and 26 dpi both flooded treatments exhibited
significantly higher values than non-flooded treatments. Interaction be-
tween treatment (flooding and infection and combined stress) was
assessed (Table 3). The major cause of variation, in both ‘Dusa™’ and
‘Duke 7’, found between values in treatmentswas due to flooding. Infec-
tion was less dominant in the stress response.

3.2.2. Shadehouse trials
Plants in the shadehouse were inoculated with P. cinnamomi and

18 days later they were flooded for two weeks after which plants
were drained and recovery was monitored. A trend similar to that
seen for PN, E, and gs in ‘Dusa™’ for the glasshouse trial was also seen
for ‘Dusa™’ in the shadehouse trial, with ‘Dusa™’ plants under the com-
bined stress treatment once again showing lower values for these
Table 3
Summary of a two-way ANOVA to determine variation caused by individual stresses and the in

Rootstock Variable % variation flooding P-value % varia

‘Dusa™’ PN 56.13 b0.0001**** 0.343
gs 33.03 0.0001*** 0.509
E 40.65 b0.0001**** 0.205
Ci/Ca 25.22 0.0007*** 0.513

Duke 7 PN 46.94 b0.0001**** 7.659
gs 42.98 b0.0001**** 4.537
E 46.71 b0.0001**** 3.515
Ci/Ca 50.45 b0.0001**** 0.9393

Significance is indicated by an asterisk.
parameters when compared to other treatments. Reductions in PN
were first apparent in infected and flooded ‘Dusa™’ plants at 21 dpi,
but increased back to control levels at 23 dpi (Fig. 4). By 27 dpi values
had dropped again and were significantly different from both non-
flooded treatments. Low levels were maintained throughout the rest
of the trial and plants did not show recovery in PN after drainage at
32 dpi. PN was also reduced in the flooded, uninfected treatment, al-
though these differences were only significant 27 dpi and 41 dpi. After
drainage PN in flooded plants was able to recover to levels that were
not significantly different from control levels by 49 dpi. Infected plants
did not differ from control plants and maintained similar rate of PN
throughout the trial. Flooded R0.12 plants, a rootstock less tolerant to
PRR, showed significantly reduced values for PN compared to the control
towards the end of the flooding period (27 dpi). These reductions were
maintained in both flooded treatments until the end of the trial and
plants did not recover after drainage. Unlike ‘Dusa™’, R0.12 infected
plants that were not flooded started showing significant reductions in
PN when compared to control plants from 33 dpi, which continued
until the trial was terminated.

In general, the more tolerant R0.06 only exhibited significant reduc-
tions in PN, E, and gs in the combined stress treatment (Fig. 4). Signifi-
cant reductions in PN in these plants relative to the control were first
evident at 25 dpi and by 27 dpi PN levels were significantly reduced
compared to all other treatments. These low levels were maintained
until termination of the trial and plants did not recover after drainage.
Flooded plants that were uninfected did not show significant differ-
ences from non-flooded, infected plants. There were no significant dif-
ferences between plants that were infected in the absence of flooding
and control plants (Fig. 4).

Transpiration and gs, showed similar trends to PN for each rootstock
(Fig. 4). Infected, flooded ‘Dusa™’ plants had the lowest rates of both E
and gs. Decreases were seen in E in both flooded treatments as early as
the first day after the start of flooding (19 dpi). Flooded, infected plants
maintained these lower values until the termination of the trial. During
the flooding period (27 dpi and 30 dpi) flooded, uninfected plants also
showed reductions in E when compared to control plants (Fig. 4). By
31 dpi these plants had recovered to control levels whereas the flooded,
infected plants maintained significantly reduced levels as compared to
controls, even after drainage. Similar results were obtained for gs, with
flooded treatments both showing significant reductions as compared
to control plants from 27 dpi until 31 dpi when there was an increase
in gs for all treatments. After drainage flooded plants that were not in-
fected recovered to control values, whilst infected, flooded plants
could not recover and maintained lower levels of gs relative to other
treatments, although these differences were not always significant.

Trends for E and gs in R0.12 also closely resembled the trend seen for
PN (Fig. 4). E and gswere reduced in flooded treatments, although signif-
icant reductions in flooded, uninfected plants were seen later (27 dpi)
than reductions in the combined stress treatment (19 dpi). By 35 dpi
both flooded treatments and non-flooded, infected plants exhibited sig-
nificant reductions in E as compared to control plants. However, by the
end of the trial E in flooded, uninfected plants was able to recover to
levels similar to the control after drainage, whilst both infected
teraction between the stresses of clonal avocado rootstocks from the glasshouse trial.

tion infection P-value % variation interaction (F × I) P-value

0.592 1.401 0.288
0.599 1.380 0.388
0.733 1.418 0.371
0.601 7.786 0.047*
0.0096** 8.418 0.007**
0.08 4.877 0.07
0.111 4.504 0.0725
0.414 1.796 0.261



Fig. 4. Effects of Phytophthora cinnamomi andflooding on net photosynthesis (PN), transpiration (E), stomatal conductance (gs) and ratio of internal and atmospheric CO2 concentrations (Ci/Ca) of ‘Dusa™’, R0.12 and R0.06 avocado rootstocks. Asterisks
indicate significance (P b 0.05)with symbols to denote the treatment/s betweenwhich differences are significant; infected andflooded (diamonds), infected (squares), flooded (triangles), control (circles). Flooding began at day 18 as indicated by the
dotted line and plants were drained at day 32 as indicated by the second dotted line.
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treatments exhibited values significantly lower than control levels.
Lower values of gs were also seen in flooded, infected plants and were
maintained until the termination of the trial. At 38 dpi both flooded
treatments exhibited reduced values relative to controls, however, un-
infected plants eventually returned to levels similar to infected, non-
flooded plants. Differences between treatments were no longer signifi-
cant by 49 dpi (Fig. 4).

Flooded, infected plants of R0.06 consistently showed lower E and gs
when compared to all other treatments and did not recover after drain-
age, but remained low until the trial was terminated (Fig. 4). Uninfect-
ed, flooded plants and infected, non-flooded plants showed significant
reductions relative to control levels for both E and gs at 27 dpi; however,
values were still higher than those seen in flooded, infected plants.
Hereafter values in infected plants and flooded, uninfected plants
returned to control levels.

Significant reductionswere observed in the Ci/Ca ratio offlooded and
infected ‘Dusa™’ plants from 23 dpi until 33 dpi compared to non-
flooded plants, which corresponded to a rapid decline in gs at this
time (Fig. 4). However, at 36 dpi following drainage no significant dif-
ferences in the Ci/Ca ratio were observed between treatments. Similar
results were obtained in flooded, infected R0.12 plants, with decreases
seen at 19 dpi and 27 dpi but returning to control levels thereafter.
R0.06 exhibited lower Ci/Ca ratios in infected, flooded plants until
30 dpi after which they returned to levels similar to other treatments.
No other treatments showed significant changes in Ci/Ca (Fig. 4). In gen-
eral the flooding component contributed the greatest variation in values
in all three rootstocks (Table 4). Interestingly the variation in values
caused by the combined treatment was most noticeable in R0.06,
which reflects the results obtained for the photosynthetic parameters.
3.3. Fluorescence measurements

3.3.1. Glasshouse trials
No significant differences in maximum quantum efficiency (Fv/Fm)

between treatments were seen for ‘Dusa™’. Differences were only ob-
served in ‘Duke 7’ at the end of the trial (23 dpi) when Fv/Fm of plants
exposed to a combination of stresses dropped to levels significantly
lower than both non-flooded, infected plants and control plants (data
not shown). Although reductions in PSII efficiency (ΦPSII) relative to
the control for infected, flooded and flooded, uninfected ‘Dusa™’ plants
were observed at 23 dpi, thedifference only became significant at 30 dpi
(Fig. 5). ‘Duke 7’ plants displayed a similar trend with differences in
ΦPSII between flooded and non-flooded treatments occurring slightly
earlier at 16 dpi, but only becoming significant at 23 dpi. Flooded
‘Duke 7’ plants that were also infected had lower values than plants
thatwere onlyflooded andΦPSII values in these plantswere significant-
ly different from infected, non-flooded plants, in addition to control
plants. These infected, non-flooded plants also showed reductions in
ΦPSII relative to the control plants, but differences were not significant.
Table 4
Summary of a two-way ANOVA to determine variation caused by individual stresses and the in

Rootstock Variable % variation flooding P-value % variation

‘Dusa™’ PN 36.40 b0.0001**** 30.04
gs 56.37 b0.0001**** 12.04
E 54.69 b0.0001**** 16.10
Ci/Ca 42.03 0.0006*** 0.010

R0.12 PN 56.09 b0.0001**** 6.363
gs 37.38 0.0002*** 12.16
E 48.05 b0.0001**** 11.06
Ci/Ca 14.76 0.0515 6.993

R0.06 PN 17.39 0.0019** 15.87
gs 18.97 0.0005*** 34.33
E 22.22 b0.0001**** 35.39
Ci/Ca 9.913 0.0543 20.47

Significance is indicated by an asterisk.
A similar trend to that observed inΦPSII values was noted in values
for photochemical quenching (qP) in both rootstocks (Fig. 5). Flooding
was observed to reduce qP with significant differences observed be-
tween flooded ‘Dusa™’ treatments and non-flooded treatments at
30 dpi. ‘Duke 7’ plants exhibited differences between flooded and con-
trol treatments from as early as 16 dpi, but differences only became sig-
nificant at 20 dpi, where infected, flooded plants showed reductions
relative to control plants. By 23 dpi both flooded treatments showed sig-
nificantly lower values than non-flooded plants. No significant differ-
ences were seen in NPQ between treatments in ‘Dusa™’. ‘Duke 7’ plants
that were both flooded and infected only showed differences in NPQ at
23 dpi where these plants were significantly lower than non-flooded, in-
fected plants. However, these plants showed values similar to control
plants and thus it is the infected, non-flooded plants that had increased
values for NPQ. It is interesting to note that ‘Dusa™’ infected, flooded
plants had the highest NPQ at 30 dpi whilst in ‘Duke 7’ the same treat-
ment had the lowest NPQ. The electron transport rate (ETR) of both root-
stocks exhibited similar patterns to gs, E and ΦPSII for the respective
rootstocks (data not shown), with significantly lower values observed
in flooded ‘Dusa™’ and ‘Duke 7’ plants, both infected and uninfected,
than in the non-flooded treatments at the end of the trial period. In gen-
eral, flooding reduced values forΦPSII, qP, and ETR, as compared to non-
flooded treatments. When significance was assessed to see if there were
any differences within the same treatments between rootstocks, no sig-
nificant differences were found inΦPSII, qP, NPQ, Fv/Fm, or ETR.

3.3.2. Shadehouse trial
Maximum quantum yield of PSII (Fv/Fm) was stable for the majority

of the trial in ‘Dusa™’, with slight increases in infected treatments seen
at 33 dpi and decreases seen in uninfected, flooded plants at the end of
the trial; however no significant differences in Fv/Fm were noted in any
of the rootstocks (data not shown). A trend similar to that seen in the
glasshouse trial was observed in the shadehouse trial for ΦPSII values
in ‘Dusa™’. Non-flooded treatments had higher values for ΦPSII than
flooded treatments (Fig. 6). At 33 dpi (1 day after drainage) ‘Dusa™’

plants in the combined stress treatment started showing significant re-
ductions in ΦPSII relative to the control. From 38 dpi ΦPSII in these
plants was also significantly lower than both non-flooded treatments,
which was maintained until the end of the trial. Flooded, uninfected
plants also showed significant reductions inΦPSII relative to the control
from 40 to 45 dpi. Infected, non-flooded plants showed similar levels to
control plants for most days (Fig. 6). The less tolerant rootstock R0.12
showed clear reductions in ΦPSII for all treatments relative to control
plants (Fig. 6). By 27 dpi flooded, infected plants showed significant re-
ductions relative to control plants and by 31 dpi all treatments showed
significant reductions relative to the control.ΦPSII values remained low
in these plants until 45 dpi when only flooded, infected plants still
showed significantly reduced values relative to the control plants, but
at 49 dpi these levels were no longer significantly lower than control
plants. In the more tolerant R0.06 rootstock, only the flooded and
teraction between the stresses of clonal avocado rootstocks from the shadehouse trial.

infection P-value % variation interaction (F × I) P-value

b0.0001**** 5.485 b0.0459*
0.0083** 0.052 0.8516
0.0021** 0.059 0.8362
0.9505 0.013 0.9453
0.0538 0.521 0.5660
0.0185* 5.553 0.0995
0.0138* 2.999 0.1773
0.1703 0.011 0.9547
0.0028** 18.35 0.0015**

b0.0001**** 15.96 0.0012**
b0.0001**** 20.16 b0.0001****
0.0077** 6.666 0.11



Fig. 5. Effects of Phytophthora cinnamomi andflooding on PSII efficiency (ΦPSII), photochemical quenching (qP) and non-photochemical quenching (NPQ) of ‘Dusa™’ and ‘Duke 7’ avocado
rootstocks. Asterisks indicate significancewith symbols to denote the treatment/s betweenwhich differences are significant; infected and flooded (diamonds), infected (squares), flooded
(triangles), control (circles). Flooding began at day 7 as indicated by the dotted line.
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infected treatment exhibited significant lowerΦPSII relative to the con-
trol, which occurred from31 dpi until the end of the trial (Fig. 6). No sig-
nificant differences were noted in photochemical quenching 14 days
after flooding or during recovery in ‘Dusa™’ or R0.12 (Fig. 6). R0.06
plants that were both flooded and infected showed significant reduc-
tions from control values from 27 dpi (9 days after commencement of
flooding) to 40 dpi. From this point until the end of the trial no signifi-
cant differences were observed between treatments.

‘Dusa™’ plants that were both flooded and infected exhibited in-
creased NPQ relative to the non-flooded treatments from 31 dpi to
45 dpi (Fig. 6). Flooded, uninfected plants also showed lower values
for NPQ than infected, flooded plants at 31 dpi and 33 dpi. There were
no significant differences between treatments by the end of the trial.
No significant differences in NPQ were seen between treatments of
R0.12, although control plantsmaintained the lowest values throughout
the trial. As seen in Dusa, R0.06 flooded, infected plants showed signifi-
cantly higher values for NPQ (31 dpi) than infected, non-flooded plants
(Fig. 6). These differences were maintained until 35 dpi when values
were significantly different from all other treatments, including control
plants. By 38 dpi NPQ values for flooded, infected plants were no longer
significantly different from the control. The ETR exhibited similar pat-
terns to gs, E andΦPSII for each rootstock, with the lowest values occur-
ring in the combined stress treatments for all three rootstocks (data not
shown).

4. Discussion

‘Duke 7’ has been the industry standard rootstock for several years,
and has recently been replaced by the more tolerant ‘Dusa™’ rootstock
in commercial nurseries in South Africa and California (Van Rooyen,
2011). The response of ‘Dusa™’ to flooding and P. cinnamomi infection
was assessed in this study to determine possible physiological markers
for PRR tolerance in rootstocks and to determine if tolerance to PRR is
associated with higher tolerance to flooding. In order to achieve this
‘Dusa™’ was first compared to the previous industry standard ‘Duke 7’
rootstock in a glasshouse trial. Following this ‘Dusa™’ was compared
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Fig. 6. Effects of Phytophthora cinnamomi and flooding on PSII efficiency (ΦPSII), photochemical quenching (qP) and non-photochemical quenching (NPQ) on ‘Dusa™’, R0.12 and R0.06 avocado rootstocks. Asterisks indicate significancewith symbols
to denote the treatment/s betweenwhichdifferences are significant; infected andflooded (diamonds), infected (squares),flooded (triangles), control (circles). Flooding began at day 18 as indicated by the dotted line and plantswere drained at day 32
as indicated by the second dotted line.
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to two other rootstocks initially selected for tolerance to PRR. R0.12was
selected for tolerance to PRR but screening showed it to be inferior.
R0.06 is a new selection that has not yet been tested on a commercial
scale and is thought to be superior to ‘Dusa™’. In addition to comparing
rootstocks, reductions in PN, associated with flooding and infection,
were investigated to determine whether these reductions were due to
stomatal or non-stomatal limitations.

In both trials floodingwas seen to have an immediate impact on root
health,whichwas greater than that observedwhen plantswere only in-
fected with P. cinnamomi. However, the combination of flooding and
P. cinnamomi had the most devastating impact on plant health and
caused extensive root necrosis andwilting (Fig. 1). Although uninfected
plants that were flooded also showed signs of wilting, this was only ap-
parent at a later date. Visible symptoms of stress were generally more
severe in ‘Duke 7’ plants as compared to ‘Dusa™’, which was also evi-
dent in photosynthetic parameters. These symptoms of flooding stress
were first observed in ‘Duke 7’ plants 10 days after flooding was com-
menced and for ‘Dusa™’ 16 days after flooding was commenced.
These visible symptoms were, however, preceded by differences in PN,
gs and E (Fig. 3), as has previously been described in avocado (Ploetz
and Schaffer, 1989). Differences in PN and gs between flooded and con-
trol plants were evident as early as 5 days after flooding commenced
(12 dpi, Fig. 3) in the glasshouse trial and changes in PN and gs were
seenwithin 3 days of the commencement of flooding in the shadehouse
trial. The rapidity with which these symptoms appeared and the poor
health of the plants by the end of the trial (Fig. 2) was not unexpected,
as avocado is considered a flood-sensitive species (Schaffer et al., 1992).

Leaf wilting and decline in general plant health of flooded plants
were observed in all rootstocks when compared to non-flooded con-
trols. In general, no significant reductions in biomass were apparent
for any rootstock in both the glasshouse trial and shadehouse trial.
Flooded ‘Duke 7’ plants showed reductions in root biomass relative to
control plants in the glasshouse trial (Table 1) and the only significant
changes seen in biomass in the shadehouse trial (Table 2) were reduc-
tions in leaf and root biomass in R0.06 plants that were flooded in com-
bination with infection. This may suggest that changes in carbon
allocation are a long-term response to flooding in avocado and that re-
ductions in root biomass are caused directly by the root rot.

‘Dusa™’ is considered a more PRR-tolerant rootstock than ‘Duke 7’
(Smith et al., 2011; Whiley et al., 2002), and this is supported by the
physiological response of the plants to infection by P. cinnamomi. Infect-
ed ‘Dusa™’ plants showed an initial decline in PN, gs, and E but by the
end of the trial there were no differences between control and infected
plants (Fig. 3). The reopening of stomata has previously been related to
flood tolerance (Zentmeyer, 1980) and thus the recovery of gs and PN to
control levels in infected ‘Dusa™’ plants could indicate recovery from
stress, in this case infection. This could possibly be due to regeneration
of feeder roots in these plants. PN, gs and E were significantly reduced
in infected ‘Duke 7’ plants as compared to control plants and could not
recover to control levels, suggesting lower relative PRR tolerance in
‘Duke 7’ plants. This appears to be a general response to infection by
P. cinnamomi as similar reductions in PN and gs have been noted in
other species (Corcobado et al., 2013; Dinis et al., 2011). Infected
‘Dusa™’ and R0.06 plants in the shadehouse trial also showed recovery
of PN, E, and gs to control levels after an initial decline (Fig. 4). However
this was not true for the less tolerant R0.12, where infected plants
showed lower levels when compared to control plants throughout the
trial. Treatments that were flooded in the absence of P. cinnamomi
showed initial increases in PN, gs, and E in both ‘Dusa™’ and ‘Duke 7’
rootstocks, whilst plants exposed to both stresses did not show this in-
crease and had lower values for these parameters (Fig. 3). However, by
the end of the trial all flooded treatments, across both rootstocks, had
significantly reduced values for PN, gs and E when compared to non-
flooded treatments. These reductions were also seen in ‘Dusa™’ in the
shadehouse trial. Interestingly the less tolerant rootstock R0.12 showed
significant reductions in PN, gs and E when plants were flooded in the
absence of P. cinnamomi. Reductions in PN, gs and E in ‘Dusa™’ were
not as severe and were not apparent in the more tolerant rootstock
R0.06, where both non-flooded, infected plants and uninfected, flooded
plants generally showed levels similar to control plants for these param-
eters (Fig. 4). Reductions in PN, gs, and Ehave been observed in a number
of plants when flooded (da Silva et al., 2011; Fleischmann et al., 2002;
Schaffer and Ploetz, 1989) and are characteristic of flood-sensitive
plants such as avocado (Kozlowski, 1997; Schaffer et al., 1992). This
may suggest that the more tolerant R0.06 is also more tolerant to
flooding in the absence of P. cinnamomi than the other rootstocks eval-
uated, but that this tolerance is compromised when plants are flooded
in the presence of P. cinnamomi.

Reductions in PN, gs and E may be as a result of damage to the roots
caused by PRR or by the lack of O2 in the growing medium resulting
from flooded conditions, as plants try to compensate for reduced
water uptake by the roots and to maintain leaf water status (Davies
and Flore, 1986). This reduced water uptake by the roots has been at-
tributed to changes in root permeability and conductivity (Else et al.,
1995; Jackson et al., 1996; Nicolas et al., 2005; Pezeshki, 2001). The de-
crease in PN is suggested to be a consequence of stomatal closure, which
reduces CO2 diffusion into the leaf (Kozlowski, 1997; Schaffer et al.,
1992). Whilst this was the likely cause of reduced PN in ‘Duke 7’ plants
infected with P. cinnamomi, stomatal limitations were unlikely to be
the sole cause of reduced PN in flooded and flooded and infected plants.
This is in agreement with Schaffer et al. (1992) who attributed changes
in PN in flooded avocado plants to non-stomatal limitations that are as-
sociatedwith the biochemistry of the photosynthetic reactions. Support
for non-stomatal limitations to PN in flooded plants was found in the Ci
values from this study. If stomatal closure was limiting CO2 diffusion
into the leaf and therefore PN, it would be expected that there would
be a parallel decrease in Ci (Farquhar and Sharkey, 1982); however, in
flooded and infected ‘Dusa™’ plants there is an increase in the Ci/Ca

ratio from 12 dpi (Fig. 3), indicating a reduced mesophyll capacity for
assimilation (Farquhar and Sharkey, 1982). An increase in Ci/Ca was
also seen in ‘Dusa™’ plants that were flooded without infection, al-
though only towards the end of the trial. This reducedmesophyll capac-
ity has been attributed to changes in chlorophyll content, altered water
and nutrient uptake, changes in enzyme efficiencies, and damage to the
photosystem (Else et al., 2009; Pezeshki, 2001). Similar non-stomatal
limitations to PN were found in ‘Verna’ lemon trees in response to
flooding (Gimeno et al., 2012). Whilst the Ci/Ca ratio was consistently
higher in ‘Dusa™’ flooded and infected plants from 12 dpi as compared
to non-flooded treatments, a similar increase in the Ci/Ca ratio was only
observed in flooded and flooded and infected ‘Duke 7’ plants at the end
of the trial, suggesting slightly different physiological responses of the
two rootstocks to flooding (Fig. 3).

In flooded ‘Dusa™’ and flooded and infected ‘Duke 7’ plants it
would appear that the photosystems are only damaged once the plants
have begun to senesce and it is therefore a long term response to
flooding, as has been previously reported (Davies and Flore, 1986;
Kozlowski, 1997). The reduced mesophyll capacity in this study in
‘Dusa™’ flooded and infected plants is therefore most likely a result of
changes in enzyme efficiencies (Kozlowski, 1997). However, in contrast
to the glasshouse study, Ci/Ca ratios in ‘Dusa™’ plants within the
shadehouse trial decreased in flooded, infected plants (Fig. 4). This indi-
cates that the decreases in PN could indeed be due to stomatal limitation
in these plants. These reductions were also seen in the less tolerant
R0.12 and the more tolerant R0.06 rootstocks, suggesting that this is a
conserved response between rootstocks. The difference between the
two trials could be due to a variation in temperature or light levels,
which in combinationwith the stress imposed by flooding and infection
may have limited PN and thus resulted in increased Ci/Ca in plants in the
glasshouse.

When the interaction between flooding and infection was assessed
it was found that in both ‘Dusa™’ and ‘Duke 7’ flooding seemed to
have a greater impact on photosynthetic parameters than infection
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(Table 3). This was confirmed in the shadehouse trials for all three root-
stocks assessed, including ‘Dusa™’, although in this trial infection did
seem to play amore significant role in the change in photosynthetic pa-
rameters (Table 4). Interestingly the impact of the combination of treat-
ments was much higher in R0.06 than in the other rootstocks, which
reflected the drastic response of the rootstock under these conditions.

Fluorescence measurements were used to further evaluate photo-
synthetic performance in flooded and infected plants. The Fv/Fm ratio,
used as an indication of stress (Ball et al., 1994; Maxwell and Johnson,
2000) or photoinhibition (Dias and Marenco, 2006), was generally un-
changed in both trials and could not be used as a useful indicator of
early responses to flooding or infection in avocado. Differences in
ΦPSIIwere noticeable at the onset of visible symptoms between flooded
and non-flooded treatments of both ‘Dusa™’ and ‘Duke 7’ plants, with
flooded plants exhibiting lower values for ΦPSII than non-flooded
plants. Similar differences were seen in ‘Dusa™’ plants from the
shadehouse trial. The less tolerant R0.12 rootstock exhibited reductions
in ΦPSII for all treatments relative to control plants, illustrating the
greater effect of infection on a less tolerant rootstock which greatly
compromises PN. The more tolerant R0.06 only exhibited reductions in
ΦPSII for plants that were exposed to the combination of flooding and
infection, with plants that were uninfected but flooded performing at
similar levels to control plants. This highlights the importance of the
combination of stress on avocado, with R0.06 tolerating either stress
well but being very susceptible to the combination of the two stresses.

This reduction inΦPSII indicates a decrease in the proportion of radi-
ation absorbed by chlorophyll associatedwith PSII that is used in photo-
chemistry (Maxwell and Johnson, 2000) and was accompanied by a
decrease in qP and an increase in NPQ in some rootstocks (Fig. 6),
which in turn suggests increased protection through xanthophyll cy-
cling (Müller et al., 2001). Decreases in ΦPSII of ‘Dusa™’ and ‘Duke 7’
grown in the glasshouse were not accompanied by an increase in NPQ
(Fig. 5), possibly suggesting a reduced ability of these plants to dissipate
excess energy resulting from a decline in photochemistry. Lower light
levels in the glasshouse as compared to the shadehouse could also ac-
count for the differences in NPQ, as lower light levels translate to less
energy that needs to be dissipated.

5. Conclusions

From this study it is evident that in the avocado rootstocks evaluat-
ed, the initial physiological response to flooding is different to that of in-
fection. Whilst infected plants showed an initial decline in PN and gs,
flooded plants showed an initial increase in these parameters. However,
the combination of the two stresses induced a severe decline in both PN
and gs. This suggests that the combination of the two stresses brings
about an additional response that is more than just additive, as sug-
gested by Mittler (2006). Avoiding waterlogged conditions in avocado
orchards is therefore critical to maintaining healthy, productive trees.
In addition, PN and gs for flooded, uninfected plants decreased to very
low levels in all rootstocks except R0.06 by the termination of the trials.
Tolerance to P. cinnamomi is therefore not related to an increased
flooding tolerance in either ‘Dusa™’ ‘Duke 7’, or R0.12 rootstocks, al-
though R0.06 seems to exhibit increased tolerance to both flooding
and infection but not to the combination of the two stresses. Tolerance
to P. cinnamomi infection does, however, appear to be related to the abil-
ity of plants to reopen stomata and allow PN to recover to pre-infection
levels, which could be related to root repair or regeneration following
infection and could be used as a physiological marker for tolerance.
This was made evident in this study by the greater ability of infected
‘Dusa™’ and R0.06 plants to restore both PN and gs to levels observed
in the control, when compared to ‘Duke 7’ and R0.12 plants.

The early decline in both PN and gs in flooded and infected plantswas
not matched by changes in fluorescence parameters and these only
began to change once visible symptoms were apparent in flooded and
flooded and infected plants. Long term flooding did, however, indicate
possible photosystem damage in both ‘Dusa™’ and ‘Duke 7’ plants as in-
dicated by a reduced Fv/Fm ratio relative to the control at the end of the
trial. This decrease was, however, not seen in shadehouse trials. Whilst
this suggests that the initial decline in PN is as a result of stomatal limi-
tations, this appears only to be the case for infected plants. Due to a high
Ci/Ca ratio in ‘Dusa™’ flooded and infected plants non-stomatal limita-
tions appear to be responsible for the decline in PN in these plants,
which could possibly be attributed to reduced enzymatic efficiencies.
Plants from the shadehouse trial did not show a similar response, with
Ci/Ca levels dropping in flooded, infected plants, which suggests that
the primary limitation to photosynthesis in these plants was a stomatal
limitation. Increased NPQ in these plants may have prevented damage
to the photosystem and limited the contribution of non-stomatal limita-
tions to PN in these plants. Assessing photosynthetic parameters may
therefore be useful in rootstock selection for both improved PRR
tolerance and flooding tolerance. In this respect, tolerance would be as-
sociated with a recovery in photosynthetic parameters following impo-
sition of stress, which could be related to an increased ability to
dissipate excess energy through xanthophyll cycling thereby preserving
the integrity of the photosynthetic apparatus.
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