UNIVERSIDAD CATOLICA DE VALPARAISO

FACULTAD DE AGRONOMIA

AREA DE HORTICULTURA

EFECTO DE APLICACIONES DE BORO AL FOLLAJE
Y AL SUELO EN PALTO (Persea americana Mill.) cv. HASS.
QUILLOTA, V REGION, CHILE

CARLOS ANDRES CRUZAT GONZALEZ

QUILLOTA CHILE
1993
INDICE DE MATERIAS

1. INTRODUCCION 1

2. REVISIÓN BIBLIOGRÁFICA 3

2.1. El boro en el suelo 3

2.1.1. Origen geoquímico 3
2.1.2. La adsorción 4
2.1.3. El boro asimilable 7

2.2. El boro en la planta 8

2.2.1. Absorción y transporte 8
2.2.2. El boro en la fisiología 10
2.2.3. El boro en la floración 14

2.3. El boro en la nutrición 15

2.3.1. La deficiencia en boro 15
2.3.2. Corrección de la deficiencia 18
2.3.3. El exceso de boro 20

2.4. El palto 22
2.5. El boro en palto 32

2.5.1. Deficiencia de boro en palto 39
3. MATERIAL Y METODO 42

3.1. Localización 42
3.2. Elección de la muestra 43
3.3. Tratamientos 44
 3.3.1. Ensayo aplicación al follaje 44
 3.3.2. Ensayo alicación al suelo 44

3.4. Mediciones 45
3.5. Análisis estadístico 47

4. PRESENTACION Y DISCUSION DE RESULTADOS 48

4.1. Ensayo aplicación al follaje 48
4.2. Ensayo aplicación al suelo 59
4.3. Análisis de tejidos 66

5. CONCLUSIONES 74

6. RESUMEN 76

7. LITERATURA CITADA 77

ANEXOS
INDICE DE CUADROS

INDICE DE FIGURAS

<table>
<thead>
<tr>
<th>FIGURA</th>
<th>Descripción</th>
<th>Pag.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Número de flores caídas por metro cúbico, tratamientos 0, 10, 11 y 12, palto cv. Hass, Quillota, V Región, 1991/1992.</td>
<td>49</td>
</tr>
<tr>
<td>2</td>
<td>Número de flores caídas por metro cúbico, tratamientos 0, 13, 14 y 15, palto cv. Hass, Quillota, V Región, 1991/1992.</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>Número de frutos caídos por metro cúbico, tratamientos 0, 10, 11 y 12, palto cv. Hass, Quillota, V Región, 1991/1992.</td>
<td>52</td>
</tr>
<tr>
<td>5</td>
<td>Peso en kilógramos de los frutos caídos por metro cúbico, tratamientos 0, 10, 11 y 12, palto cv. Hass, Quillota, V Región, 1991/1992.</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>Peso en kilógramos de los frutos caídos por metro cúbico, tratamientos 0, 13, 14 y 15, palto cv. Hass, Quillota, V Región, 1991/1992.</td>
<td>56</td>
</tr>
</tbody>
</table>
1. INTRODUCCION

El creciente desarrollo de la industria paltera en los últimos años, ha llevado a los investigadores a estudiar como optimizar los procesos productivos, de tal forma de ser capaces de competir y prevalecer en mercados altamente exigentes.

Inmersos en este objetivo se han orientado esfuerzos hacia el estudio de las bajas producciones de palta, que son un problema en la mayoría de las áreas de producción, incluyendo a Australia, California, Florida e Israel. SCHOLEFIELD, SEDGLEY y ALEXANDER (1985) señalan que el problema más común parece ser el ciclo de producciones bianuales, en donde una alta carga de un año es seguida por una carga escasa al año siguiente. Muchos autores han discutido la importancia de las relaciones entre los niveles de carbohidratos, fruta, hojas e inducción floral y la importancia de considerar todos estos factores con la producción, así como todos los aspectos del desarrollo de los árboles a través del año, los cuales parecen tener un efecto significativo sobre la producción.

Uno de los puntos relevantes en la producción de paltos es que ésta depende de que la iniciación y el desarrollo floral, la polinización y la cuaja sean exitosas. Problemas en cualquiera de estos procesos pueden tener un efecto detrimental en la producción de fruta, la que no puede ser aliviada con alguna práctica cultural alternativa. Es importante entender la fisiología de los procesos reproductivos, de forma tal que se pueda obtener una cosecha abundante según lo ha señalado SEDGLEY en 1987.

WHILEY (1990b) señala que el boro está estrechamente asociado con la división celular y la actividad meristemática y es particularmente importante durante la polinización y el desarrollo temprano del fruto. COETZER y ROBBERTSE (1987)
demostraron que el boro en una cantidad óptima ejerce una influencia positiva en el desarrollo del tubo polínico. Por otra parte, la mayoría de los huertos de palto en Chile presentan niveles foliares de boro bajos, los que suelen no ser superiores a 15-20 ppm. Basados en los antecedentes proporcionados por estos y otros investigadores, se hace muy importante el estudio de los procesos y elementos involucrados en la cuaja.

El presente ensayo tiene como objetivo determinar el efecto de aplicaciones de boro al follaje y al suelo sobre la cuaja, la producción y su reserva en palto (Persea americana Mill.) cv. Hass.
2. REVISION BIBLIOGRÁFICA.

2.1. El boro en el suelo:

2.1.1. Origen geoquímico:

KRAUSKOPF (1983), señala que el boro es el único elemento no metálico de los seis microelementos, posee una valencia de +3 y el más pequeño radio iónico. Los minerales más corrientes como se puede encontrar el boro son boratos hidratados como bórax (B4 O7 Na2, 10 H2O), colemanita (B6 O11 Ca2, 5 H2O), boratos anhidridos como ludwigita (Mg2 Fe B O5), kotoita Mg3 (B O3)2 y borosilicatos como turmalina y axinita.

Es un elemento litófilo, se presenta siempre en combinaciones con oxígeno, generalmente coordinado tres veces, pero en algunos minerales cuatro veces. Los boratos comunes son suficientemente solubles de forma tal que sus principales sitios de acumulación son depósitos de evaporación. En ambientes geológicos las soluciones de boro contienen principalmente H3 B O3 y H2 B O3 (KRAUSKOPF, 1983).

Ente los minerales más comunes de las rocas ígneas, las micas muestran la mayor concentración de boro, en concentraciones de décimas por ciento. Como regla general, el boro es más abundante en rocas volcánicas que en rocas plutónicas de composición similar (KRAUSKOPF, 1983).

Se encuentra en las rocas sedimentarias en cantidades más importantes que en las rocas ígneas. En ellas se encuentra bajo la
nutritivos. Es también la razón por la que el boro puede ser fácilmente lavado en los suelos. La formación del anión B (OH)4 por hidrólisis de B (OH)3, depende mucho del pH, es así como en los suelos ácidos o ligeramente alcalinos, el ácido bórico (H3 BO3) es muy dominante. Por otra parte, el boro es adsorbido por los suelos más fuertemente que los aniones Cl y NO3, siendo los principales lugares inorgánicos de adsorción del boro los hidróxidos de fierro y aluminio; los óxidos de fierro y aluminio; los minerales arcillosos y en particular aquellos de tipo mica; los hidróxidos de magnesio que recubren las superficies de descomposición de los minerales ferromagnésicos. ELLIS y KNEZEK (1983) señalan que el boro es adsorbido más frecuentemente por los suelos que otros aniones tales como Cl y NO3.

Según KRAUSKOPF (1983), la retención de boro por los materiales de arcilla y sesquióxidos es dependiente del pH, con adsorción máxima en el rango de 7-9. La retención es mayor en los sesquióxidos que en los materiales de arcilla, y el Al(OH)3 es más efectivo que el Fe(OH)3. La cantidad de boro absorbido depende del área de contacto del adsorbente, y en la solución alcalina disminuye en la medida que el precipitado de hidróxido envejece.

Según KEREN y GAST (1981), las especies químicas B (OH)3, B (OH)4 y OH estarían en competencia por los mismos lugares de adsorción. B (OH)4 y OH presentaban una afinidad más elevada que aquella del B (OH)3 para las superficies arcillosas. Sin embargo, en el B(OH)3 que domina a pH bajo, la adsorción de boro es más baja. Con pH alcalinos crecientes, la concentración en B (OH)4 se eleva y la adsorción de boro es mayor.

Por otra parte, LOUE (1988) señala que la fijación de boro tiende a aumentar en condiciones de desecación y la reversibilidad se ve reducida.
La especie neutra de H₃ B O₃ es la predominante que se espera en las soluciones de suelo. Únicamente a valores de pH superiores a 9,2 el H₂ B O₃ se volvería predominante (LINDSAY, 1983). La mayoría de los fertilizantes de boro son de la forma B₄ O₇ y se espera que se hidrolicen a H₃ B O₃ (ELLIS y KNEZEK, 1983).

Según KRAUSKOPF (1983), el desgaste de las rocas que contienen boro origina boratos en solución, principalmente en forma de ácido no ionizado, H₃ B O₃, y los compuestos que puedan ser formados con los iones comúnmente presentes en aguas superficiales son suficientemente solubles para permitir que gran parte del boro quede libre y pueda migrar.

La materia orgánica juega un papel importante en la disponibilidad de boro en los suelos. Una parte importante del boro es retenida por la materia orgánica y liberada progresivamente por los microorganismos. La mineralización de la materia orgánica conduciría a una liberación del boro asimilable (boro soluble en agua). En medio ácido, donde la adsorción de boro sobre la fracción mineral es relativamente baja, esta retención sería más fuerte que la unión borato-sesquióxidos y en los suelos ácidos en particular, los coloides húmicos formarían la reserva principal de boro. Por otro lado, se cree que el boro sería retenido al unirse con compuestos intermedios de la descomposición de la materia orgánica y sería temporalmente inasimilable (LOUE, 1988).

ELLIS y KNEZEK (1983) señalan que los precipitados frescos de Al (OH)₃ adsorberán grandes cantidades de boro, pero la adsorción disminuirá en un rango de tiempo de veinte minutos a siete días. Aún después de varios días la adsorción de boro por el Al(OH)₃ será de varios órdenes de magnitud mayor que la mostrada por el suelo. Los autores sugieren que el boro adsorbido es liberado a medida que el precipitado fresco de Al(OH)₃ se polimeriza al
pasar el tiempo. También notaron que el boro adsorbido por los suelos estaba bien correlacionado (r=0.98) con el cambio en el Al intercambiable durante la alcalinización, sugiriendo que el Al(OH)3 es una de las principales fracciones que adsorben boro en los suelos.

Los mismos autores establecieron que la fijación del boro parece proceder a través de la formación de complejos entre las moléculas de boro y los grupos OH disponibles de los óxidos de Al y Fe, y de los minerales de arcilla. La fijación de boro ocurrió a niveles de pH de 5,5 a 7,0 con el Al2O3 y en el rango de pH de 8 a 9 con el Fe2O3 y los minerales de arcilla.

2.1.3. El boro asimilable:

La textura del suelo juega un papel importante en la riqueza en boro asimilable. Los suelos con textura ligera contienen en general menos boro asimilable que los suelos pesados. Por otra parte el boro es fácilmente lavado en suelos de textura ligera (LOUE, 1988). La persistencia del boro en los suelos es determinada en gran parte por el tipo de suelo y la forma aplicada del boro. El boro se lixivia fácilmente de suelos arenosos pero es menos susceptible a este fenómeno en suelos aluviales y con altos contenidos de arcillas (MURPHY y WALSH, 1983). Aún cuando la deficiencia de boro puede presentarse en toda clase de suelos, ocurre con mayor frecuencia en los terrenos ligeros, que en los de tipo pesado (LOUE, 1988).

El boro es soluble en agua, y si en condiciones de humedad es fácilmente absorbido, con exceso de agua es lixiviado,
perdiéndose como nutriente potencial (LAVIN, AVENDÁNO y VIEIRA, 1973).

El boro soluble en el agua está más concentrado frecuentemente en el horizonte superior del suelo donde se encuentra, sobre todo asociado a la materia orgánica, según DECAU (1965). De acuerdo a esto LOUE (1988), señala que la alimentación boratada de las plantas en períodos de sequía puede ser insuficiente si los horizontes inferiores son muy pobres en boro. Por otro lado, señala que el boro asimilable disminuye en la medida que el pH del suelo aumenta puesto que se incrementa la adsorción del mismo.

2.2. El boro en la planta:

TIFFIN (1983) señala que sus investigaciones establecen que el H₃B O₃ es la forma predominante de boro en la mayoría de las soluciones del suelo y de las plantas.

Al boro se le encuentra particularmente en los ápices vegetativos, flores y tejidos de conducción, siendo su presencia especialmente necesaria en aquellos sitios donde se verifica una activa división celular. Además tiene gran importancia en la formación de frutos, flores y raíces, en la absorción de cationes y en el transporte de sustancias en la planta (LEWIS, 1980).
2.2.1. **Absorción y transporte**:

BOWEN (1968) señala que la captación de boro es dependiente de la temperatura. La absorción de boro sería por vía sistema de transporte de electrones y/o por un acoplamiento al sistema de fosforilación oxidativa.

BROWN *et al.* (1983) muestran que la susceptibilidad a la deficiencia de boro en plantas de tomate es controlada por un gen recesivo. De esta forma, existen plantas incapaces de transportar boro al ápice de la planta. Los factores que controlan el transporte de boro están localizados en las raíces de las plantas boro eficientes.

El boro es absorbido por las plantas en forma de ácido bórico no disociado (LOUE, 1988). Basado en investigaciones en caña de azúcar el mismo autor señala que el proceso de absorción de boro por parte del tejido foliar, es inicialmente pasivo (por difusión en el espacio libre) seguido después de una absorción activa en el espacio interno.

BOWEN y NISSEN (1976) concluyeron que una parte importante del boro total absorbido por las raíces de cebada seccionada se encontraba formando un complejo borato-sacáridos en la pared celular. Y si bien existe absorción bajo control metabólico, ésta constituye una proporción muy baja, siendo la absorción principalmente a través de un flujo hídrico por las raíces.

NISSEN (1974) determinó que el transporte activo del boro debía ser dominante en presencia de concentraciones externas bajas mientras que el transporte pasivo intervendría en las
concentraciones del medio más elevadas, en la mayoría de la especies.

El boro es relativamente poco móvil en las plantas y en general el contenido de boro se eleva de las partes inferiores hacia las superiores. El transporte de boro de las raíces hacia los tallos se haría de una forma pasiva, bajo formas inorgánicas o bajo forma de complejos borato-azúcares, siguiendo el flujo de la transpiración. El ritmo de la transpiración ejerce una influencia marcada sobre el transporte de boro hacia la parte alta de la planta. Se admite generalmente que el boro es transportado principalmente en el xilema y es en gran parte inmóvil en el floema. Existe por otra parte, muy poco boro detectado en el floema. El boro no migra por lo tanto, desde las hojas hacia los nuevos puntos de crecimiento donde existe la necesidad de un suministro regular del medio de crecimiento (LOUE, 1988).

El boro se traslaca fácilmente en el xilema, pero al llegar a las hojas se vuelve uno de los micronutrientes menos móviles. Así, una hoja particular puede contener suficiente boro o exceso del mismo, mientras una hoja en el mismo tallo puede volverse deficiente (TIFFIN, 1983).

OERTELI y RICHARSON (1970) describen la inmovilidad del boro en las hojas en términos de movimientos cíclicos, estacionales y localizados que previenen el escape y transporte de este metal a distancias grandes dentro de la planta.

Comparando los efectos residuales de Solubor aplicado a las hojas y de bóxar aplicado al suelo, BURRELL (1958) observó que un único tratamiento de bóxar al suelo mantenía los niveles de boro en hojas de manzana y frutos por tres años, mientras los materiales aplicados a las hojas no mostraban efecto de traslado en la hoja para este elemento para el siguiente año.
Según LOUE (1988), los principales factores de los que depende la acumulación de boro en las hojas son: el contenido de boro disponible en el suelo, el flujo xilemático y el ritmo de la transpiración. Algunos autores han señalado que el boro favorecería el suministro de glúcidos en momentos como la floración. Por otro lado también conferiría una mejor resistencia a las heladas. Sin embargo, su deficiencia provocaría susceptibilidad a ciertos parásitos.

2.2.2. El boro en la fisiología:

LEWIS (1980) señala que el rol primario del boro en la evolución de las plantas vasculares, corresponde a la biosíntesis de lignina y, en conjunto con las auxinas, inducir a la diferenciación del xilema.

Las altas concentraciones de auxina promueven la formación de etileno, proceso que se encuentra relacionado con el contenido de boro en la planta; sin embargo, LEWIS (1980) señala que esta interacción no ha sido suficientemente estudiada.

La tendencia del ácido bórico (BO\textsubscript{3} H\textsubscript{3}) a formar complejos con ciertos glúcidos (TIFFIN, 1983) presentando la configuración cis-diol está bien confirmada, pero tales complejos no han sido realmente identificados en las células (LOUE, 1988).

LOUE (1988) y LEWIS (1980) señalan que el boro juega un papel importante en la migración y utilización de los glúcidos. El boro facilitaría el transporte del azúcar (cuya principal forma de transferencia es la sacarosa) bajo la forma de un complejo azúcar-borato a través de la membrana, favoreciendo su permeabilidad.
La intervención del boro en procesos enzimáticos de síntesis de la sacarosa y del almidón ha sido demostrado por DUGGER y HUMPHREYS (1960). El rol del boro a nivel bioquímico está relacionado con el control de las enzimas involucradas en el metabolismo de los carbohidratos, de polifenoles y lignina, de las auxinas y de los ácidos nucléicos (LEWIS, 1980).

LOUE (1988), PRICE, CLARK y FUNKHOUSE (1983) y BIRNHUAM, DUGGER y BEASLEY (1977) señalan que la formación de glucosa-6-fosfato es inhibida por una cantidad pequeña de ácido bórico, por lo tanto, una cantidad menor está disponible para la síntesis de sacarosa. El boro podría de esta forma regular la actividad de la 6-fosfogluconato deshidrogenasa e intervendría a nivel de la vía de las pentosas-fosfatos. En ausencia de boro la actividad más importante de la 6-fosfogluconata deshidrogenasa favorecería la biosíntesis de los fenoles que tenderían a acumularse y a producir necrosis.

LOUE (1988) señala que el boro es necesario para la síntesis de pectinas. Cerca de un 50% del boro total de las plantas está contenido en las paredes celulares. Ha descrito también que plantas deficientes en boro presentan una menor cantidad de lípidos constituyentes de sus membranas. Por su acción inhibidora de la 6-fosfogluconato deshidrogenasa, el boro regula la síntesis de fenoles e impide la formación de necrosis. La deficiencia en boro se acompaña también de una producción de callosa, poliglucósido cercano de la celulosa que puede obturar los tubos perforados que no funcionan normalmente en el transporte de la savia en el floema.

ALBERT (1968) señala que el suministro regular de boro es necesario para la actividad meristemática, puesto que sería necesario para la síntesis de bases nitrogenadas como el uracilo. LOUE (1988) agrega que el boro es un componente esencial del
ARN (ácido ribonucleico), y su insuficiencia perturba la formación de ribosomas (que contienen el 50% de ARN). Por lo tanto, se vería afectada la síntesis de proteínas, fundamentales en los tejidos meristemáticos.

El boro jugaría un papel importante en la regulación de las funciones de las membranas celulares. La actividad de la ATPasa, y por tanto el transporte iónico relacionado al metabolismo podrían ser en efecto reestablecidos por el aporte de ácido bórico (BO₃ H₃) a las raíces deficientes. El boro tendría por lo tanto un papel en los procesos de transporte de los productos asimilados (LOUE, 1988 y LEWIS, 1980).

RAVEN (1980) dice que el uso del transporte activo del ácido bórico para mantener la distribución del boro a través de la membrana para el equilibrio termodinámico resulta energéticamente caro.

Según lo señalado por LOUE (1988), los tejidos deficientes en boro presentan acumulaciones excesivas de auxina. La deficiencia de boro se ve acompañada de una fuerte acumulación de AIA que provoca una clara inhibición del crecimiento. PRICE, CLARK y FUNKHOUSE (1983) señalan que la reducción de la elongación observada en raíces deficientes en boro puede ser simulada por niveles supraóptimos de AIA.

LEWIS (1980) plantea una compleja existencia de interacciones metabólicas entre el boro, la lignificación, las peroxidasas y el metabolismo de las auxinas. El boro está involucrado en la biosíntesis de precursores de la lignina. Las peroxidasas están envueltas en la polimerización de los precursores de lignina; por otra parte, los ácidos fenólicos acumulados en tejidos deficientes de boro pueden controlar la actividad de las peroxidasas, puesto que la actividad de las peroxidasas se incrementa en tejidos
deficientes en boro. Los precursores de auxina son derivados de los tejidos autolizados sujetos a lignificación; por otra parte las auxinas están involucradas en la diferenciación de los tejidos de conducción. La concentración de auxinas se incrementa en tejidos deficientes en boro. Las peroxidásas están envueltas en la actividad de la AIA-oxidasa, la actividad de estas últimas se ve incrementada en tejidos deficientes en boro, y que presentan una elevada concentración de auxinas.

Las auxinas tienen un rol importante en el desarrollo inicial de raíces adventicias, en tanto que su posterior crecimiento es fuertemente estimulado por el boro. También hace referencia a que la ramificación de las raíces se origina a partir del periciclo o de la endodermis y que en esta zona del cambium vascular algunas células se diferencian como xilema, es por ello, sugiere que dentro de estos tejidos el boro tiene un rol primario.

El mismo autor señala que las necrosis de los puntos de crecimiento en las partes terminales que se observan en las deficiencias de boro son causadas por la acumulación de auxina y fenoles. PRICE, CLARK y FUNKHOUSER (1983) señalan que esto podría ser una respuesta secundaria evocada a través de algunos efectos del boro sobre compuestos que afectan la utilización o síntesis de auxinas. LEWIS (1980), sugiere un rol potencial del boro en la regulación de la actividad de la hidroxilasa y la oxidasa sobre las fenolasas.

Dosis elevadas de auxina pueden efectivamente provocar problemas del metabolismo parecidos a aquellos de la deficiencia de boro. Sin embargo, no ha sido posible establecer una relación clara entre el boro y el metabolismo de la auxina. No se sabe si los aumentos de las cantidades de auxina de las raíces de las plantas deficientes en boro, proceden de un efecto del boro sobre la utilización o la síntesis de la auxina o de un efecto inhibidor
del boro sobre la AIA oxidasa. La AIA oxidasa es una enzima que determina el contenido de AIA destruyendo el AIA por oxidación. Algunos autores piensan que el boro protegería el sistema AIA oxidasa formando complejos con los inhibidores de la AIA oxidasa. La acumulación de AIA estaría por lo tanto provocada por inhibidores de la AIA oxidasa y la presencia anormal de compuestos fenólicos en las plantas deficientes en boro podría ejercer esta inhibición (LOUE, 1988).

2.2.3. El boro en floración:

LEWIS (1980) señala que el boro tiene gran importancia en las flores y en la germinación del polen, así como también que el boro participa en la germinación del polen y en el posterior desarrollo del o los tubos polínicos. GARG, SHARMA y KONA (1979) señalan que al trabajar con flores de arroz a las cuales se les aportó boro en solución nutritiva hasta una concentración de 2,5 ppm de boro, observó que mejoraba el tamaño y la fertilidad de los granos de polen. AGARWALA et al. (1981), observaron en plantas de maíz sometidas a deficiencia en boro, que la salida de flores macho se veía muy perjudicada, así como la antesis suprimida o retardada.

WOODBRIDGE, VENEGAS y GRANDALL (1971) encontraron en pistilos de peral, cerezo y manzano provenientes de árboles que crecieron en suelos con contenidos de boro de 1 mg/kg y 2 mg/kg, contenidos de boro en un rango de 50 mg/kg y 100 mg/kg.

LEWIS (1980) sugiere que tanto el estilo como el estigma son tejidos ricos en boro y que el polen de muchas angiospermas
requiere de aspersiones externas de boro para su germinación in vitro.

LAVIN, AVENDAÑO y VIEIRA (1973) señalan que en un ensayo de fertilización bórica en un viñedo de secano del Depto. de Cauquenes, aplicando bórax durante dos años consecutivos, el contenido de boro soluble se incrementó mayormente el segundo año, y que no hubo efecto de la fertilización sobre los índices de madurez del fruto, ni sobre el peso promedio del grano. Pero por otra parte, la producción fue significativamente superior con la segunda dosis más alta el primer año; y más alta aún con la dosis más alta el segundo año. Por otra parte señalan que al realizar análisis de tejido foliar (pecíolos) en floración, obtuvieron valores más altos el segundo año de aplicación y muestreo.

2.3. El boro en la nutrición:

2.3.1. La deficiencia en boro:

LOUE (1988) señala que las principales condiciones del medio que favorecen las deficiencias de boro son: las reservas del suelo, el pH y el estado hídrico del suelo, la temperatura y las interacciones con otros elementos fertilizantes. Las reservas de boro son bajas en suelos de textura gruesa y pobres en materia orgánica, en suelos formados sobre rocas ígneasácidas y más cuando son zonas de alta pluviometría, y también en suelos ácidos arenosos. MURPHY y WALSH (1983) señalan que las deficiencias en boro ocurren más a menudo en arenas de colores ligeros y en suelos arcillosos en regiones húmedas.
Para LEWIS (1980) el problema de la deficiencia, generalmente no es ocasionado por un bajo contenido de este elemento en el suelo sino que por una absorción insuficiente de la planta, debido ésta esencialmente a condiciones adversas de suelo.

Cuando existen deficiencias hídricas en el cultivo, sean éstas debido a años secos o a problemas en el riego, se presentan problemas de absorción del boro. Además, el flujo provocado por la transpiración juega un papel importante en el transporte del elemento a través de la planta, según señalan BERGER (1949), citado por LOUE (1988), y GUPTA et al. (1976).

Para LOUE (1988), el pH del suelo es uno de los principales factores que determina la asimilabilidad del boro en los suelos, ésta disminuye cuando el pH se eleva. Esta relación negativa entre el pH del suelo y el boro en la planta se verifica sobre todo para los pH superiores a 6,5.

TANAKA (1967) propuso que la intensidad lumínica se relaciona con el metabolismo del boro. Cuando éstas son intensidades bajas, las exigencias en boro son menores.

LOUE (1988) señala que en lo que concierne a N, P, K, la interacción más importante es la interacción nitrógeno por boro. Ha sido demostrado que las fertilizaciones nitrogenadas en grandes cantidades pueden atenuar los excesos de boro, disminuyendo la absorción de boro por las plantas. Una elevada fertilización nitrogenada podría inducir a una deficiencia. La necesidad de boro se ve aumentada en presencia de niveles elevados de nitrato.

TANAKA (1967) demostró la relación entre el boro y el fósforo. Una deficiencia relativa en fósforo en relación al N y K favorece la aparición de la deficiencia de boro. La necesidad de boro se ve más bien incrementada en presencia de niveles bajos de fósforo.
LOUE (1988) señala que la interacción potasio por boro no parece seguir una regla general. Sin embargo, la tendencia muestra más bien que las aplicaciones crecientes de potasio provocan una ligera reducción de la absorción de boro.

REEVE y SHIVE (1944) indicaron que el Ca y K agravan los síntomas de deficiencia de boro en tomates. La toxicidad de boro en un medio demasiado rico en boro puede ser disminuida aumentando las cantidades de calcio del medio, pero el efecto del K fue opuesto. Se puede reducir la toxicidad por boro en los suelos adicionando Ca a éste.

A pH altos el boro se inmoviliza, especialmente cuando la solución de suelo presenta una alta concentración de iones calcio. Este efecto del calcio no sólo se debería a su acción sobre la reacción de suelo, sino que sería un efecto directo, también, debido a una relación desequilibrada entre el calcio y el boro en la solución de suelo (LOUE, 1988).

COOKE (1975) señala que aplicaciones excesivas de cal pueden causar la deficiencia de boro, pero el problema puede ser grave en ciertos años y no presentarse en otros.

De acuerdo a lo señalado por LOUE (1988), la sintomatología varía según la especie de que se trata. Aparecen síntomas internos al primer nivel celular y vascular: proliferación de células más o menos deformadas, degeneración de los tejidos meristemáticos, membranas celulares, acumulación de compuestos fenólicos en las vacuolas, aparición de zonas fibrosas y mal desarrollo de los vasos.

El mismo autor plantea que el boro al no desplazarse fácilmente desde las hojas basales, presenta síntomas externos inicialmente en la parte más joven de la planta:
- El crecimiento terminal se reduce considerablemente. La yema terminal muere, los brotes axilares se estimulan y producen ramas laterales o mueren igualmente, obteniéndose una apariencia terminal arrosetada. Los entrenudos son cortos.

- Las hojas más jóvenes se ven deformadas, algo rizadas, de color verde azulado, más espesas y frágiles.

- Los pecíolos y los tallos se lignifican, se hacen fibrosos y frágiles.

- El desarrollo radicular puede verse afectado con raíces espesadas y puntas necrosadas. En la remolacha se ahueca el corazón de la raíz.

- La formación de flores y de frutos se ve perturbada. El boro al jugar un papel en la germinación de los tubos polínicos, afecta en el caso de deficiencia, a la germinación del polen y a la formación de frutos, como es el caso de algunas variedades de vides.

LOUE (1988) señala que el boro afecta el desarrollo del tubo polínico, por lo que su deficiencia puede reducir notablemente la cuaja de frutos. Esta situación puede ser de especial trascendencia en el caso de perales, donde se ha visto que aspersiones de boro poco antes de la floración, aumentan la cuaja. Por otra parte, en vides se ha observado peor cuaja con deficiencia de boro y en alfalfa, en la que se manifiesta una mayor floración y una peor formación de granos (GUPTA, 1979).
2.3.2. Corrección de la deficiencia:

LOUE (1988) y MURPHY y WALSH (1983) señalan que los boratos de sodio constituyen las fuentes clásicas de boro. Son utilizados solamente en aplicaciones al suelo, pero el solubor que es un producto pulverulento cuya composición media es Na₂ B₈ O₁₃, 4 H₂O, con un porcentaje de boro aproximado de 20,5, puede también ser utilizado en aplicaciones foliares a causa de su mayor solubilidad y de su compatibilidad con la mayor parte de los productos de aspersión.

La utilización de ácido bórico en el suelo o en pulverizaciones es más limitada, su composición es H₃ B O₃, con un porcentaje de boro aproximado de 17,5 LOUE (1988) y MURPHY y WALSH (1983).

El bórrax es ampliamente utilizado, su composición es Na₂ B₄ O₇, 10 H₂O; con un porcentaje de boro aproximado de 11,5 total y 10,4 soluble en agua (LOUE, 1988).

Las deficiencias en boro son más frecuentemente prevenidas y corregidas por el aporte de los abonos boratados al suelo. Pero las pulverizaciones de los productos boratados (B O₃ H₃ * Solubor), son frecuentemente más eficaces para los cultivos perennes (LOUE, 1988).

El Boro Floable o SUPERFLOR corresponde a un producto de boro líquido concentrado, que contiene un 15% de boro. No debe aplicarse más de 4 lt/ha.

LEHR (1983), hace referencia a la solubilidad de los siguientes compuestos boratados: Na₂ B₄ O₇ * 10H₂O (bórrax), soluble; Na₂ B₄ O₇ * 5H₂O (tincalconita), soluble; Na₂ B₄ O₇ *(bórrax
deshidratado), soluble; K₂ B₄ O₇ * 5H₂O, soluble; Ca₂ B₆ O₁₁ * 5H₂O (colemanita), ligeramente soluble. La solubilidad de las fuentes de boro a 0ª C en la solución de UAN fue de 0,17% de borocomo Na₂ B₄ O₇ * 10H₂O y de 0,32% de boro como H₃ B O₃ (SILVERBERG, YOUNG y HOFFMEISTER, 1983).

LOUE (1988) y MURPHY y WALSH (1983) señalan que la dosis óptima aplicada al suelo depende de la especie, de las prácticas de los cultivos, de la pluviometría, del encalado, de la materia orgánica del suelo, del suelo, etc. LOUE (1988) señala que hace falta tener en cuenta a la vez las exigencias de las especies en relación con la deficiencia y sus sensibilidades en relación con la toxicidad. El modo de aplicación es también un factor importante.

La aplicación de boro en pulverizaciones foliares está mucho más desarrollada para corregir las deficiencias. La absorción de boro es más rápida que una aplicación al suelo; con las pulverizaciones anuales, se obtiene una distribución de boro en las hojas y en los frutos más rápida y más uniforme. Las aplicaciones al suelo se acompañan en general de niveles de boro en las plantas variables según las condiciones climáticas que prevalecen. Sin embargo, el efecto del boro sería más duradero en aplicaciones al suelo (LOUE,1988).

Para las aplicaciones foliares, el Solubor y el ácido bórico son los productos más utilizados. Las dosis van en general de 0,1 a 0,5 kg de boro por hectárea. Las aplicaciones foliares precoces permiten una mayor absorción de boro que las tardías (LOUE,1988). El número de pulverizaciones varía de acuerdo con los cultivos de una región a otra, a causa de la baja movilidad del boro en la planta (MURPHY Y WALSH, 1983).

MURPHY y WALSH (1983) señalan que las aplicaciones por aspersión anuales de boro dan como resultado niveles uniformes
y deseables de boro en las hojas y frutos mientras que las aplicaciones en suelos dan como resultado niveles fluctuantes de este elemento debido a las condiciones climáticas.

2.3.3. El exceso de boro:

Según LOUE (1988), el boro puede llegar a ser tóxico para numerosas especies en contenidos poco superiores a aquellos juzgados correctos. La relación de los contenidos tóxicos con los normales es claramente menor para el boro que para los demás elementos nutritivos. Los síntomas de toxicidad consisten en una necrosis progresiva de las hojas que empieza por un amarillamiento de las extremidades y de los bordes de las hojas, que progresa entre los nervios laterales hacia la nervadura central y evoluciona con un oscurecimiento y posterior necrosis y las hojas caen prematuramente.

Los suelos en los que el exceso de boro puede presentarse, son aquellos derivados de los sedimentos marinos, los suelos de las regiones áridas o semiáridas y los suelos derivados de una roca madre rica en boro (LOUE, 1988 y VALENZUELA y SEPULVEDA, 1977). Para KUBOTA y ALLAWAY (1983), la toxicidad parece estar más asociada con el uso de aguas ricas en boro para irrigación más a menudo que con suelos naturalmente altos en este elemento.

Las aplicaciones de boro bajo forma muy soluble pueden provocar excesos en los cultivos menos exigentes en boro o poco tolerantes. Sin embargo, en presencia de dosis no demasiado altas, la toxicidad es poco probable, salvo en casos de aplicación no uniforme con zonas localizadas de exceso (LOUE, 1988).
Según OERTLI y KOHL (1961), en los casos de toxicidad, la distribución de los contenidos de boro son desiguales en la planta. Por otra parte, las plantas tolerantes acumularían boro más claramente que la plantas sensibles y una diferencia de sensibilidad de los tejidos al boro no sería la causa.

LAVIN (1988) verificó en frambuesas afectadas por excesos de boro, muerte de ramillas y fuertes pérdidas de producción. Muchas yemas no brotaron y otras iniciaron el crecimiento, pero éste tomó la forma de roseta, con numerosos ápices de escasa elongación y, en muchos casos, tomando la forma de callo. Los brotes que lograron elongarse fueron débiles, cloróticos y no lograron formar flores o éstas abortaron. Las hojas redujeron drásticamente su tamaño, con abundante clorosis intervenal y un encarrujamiento generalizado. Muchos frutos se desarrollaron, pero no lograron calibre, ni maduraron.

Los medios de lucha consisten sobre todo en controlar las aguas de riego, practicar un encajado moderado para disminuir la asimilabilidad y, en algunos casos, una fertilización nitrogenada intensiva (LOUE, 1988). LAVIN (1988) señala como una forma de reducir la toxicidad, el regar por inundación, en repetidas oportunidades, para intentar lixiviarn el boro del sector de las raíces.

2.4. El palto:

El palto (Persea americana Mill.) pertenece a la familia de las Lauráceas, suborden Magnolíneas, Orden Ranales, clase dicotiledónea (ENGLER’S, 1964).

WOLTENHOLME (1987) señala que el sistema radicular del palto se caracteriza por poseer un sistema de raíces superficial, extensamente suberizado, relativamente ineficiente, con una baja conductividad hidráulica y baja frecuencia de pelos radicales.

El desarrollo evolutivo del palto como un árbol tropical ha dispuesto a la especie hacia una tendencia vegetativa. Este rasgo se ha mantenido en los diferentes cultivares durante la domesticación comparativamente reciente como un árbol de huerto (WOLTENHOLME, 1987).

Las producciones alternadas de palto parecen estar estrechamente relacionadas con los niveles de carbohidratos en el árbol. Altas productividades seguidas de una alta acumulación de carbohidratos durante el invierno, resulta en bajos niveles de carbohidratos durante el año siguiente. Los máximos niveles de carbohidratos ocurren a principios de primavera, declinando durante la floración, crecimiento de brotes y desarrollo de frutos, para llegar a un mínimo en otoño(SCHOLEFIELD, SEDGLEY y ALEXANDER,1985).

La producción en paltos depende de que sea afortunada la iniciación floral, el desarrollo floral, la polinización y la cuaja.
Problemas con cualquiera de estos procesos pueden tener un efecto detrimental en la producción de fruta, la que no puede ser aliviada con alguna práctica cultural alternativa. Es importante entender la fisiología de los procesos reproductivos y que el manejo de la cosecha incluye proveer una producción optimista (SEDGLEY, 1987).

WHILEY et al. (1988) han descrito los ciclos típicos de crecimiento anual de los órganos vegetativos y reproductivos del palto. Así, el palto presentaría dos flash vegetativos (período de extensión del brote), en una temporada de crecimiento completo, cada uno de ellos seguido por un período de intensificación del crecimiento de la raíz. El primer brote vegetativo comienza en la primavera hacia el final de la floración, mientras que el segundo, ocurre en los meses de verano.

Luego de un semireceso invernal, el crecimiento reproductivo comienza con la floración, seguido por la cuaja, desarrollo y maduración del fruto. Todos estos estados tienen una alta demanda de las reservas del árbol, ésto es en agua, nutrientes minerales y carbohidratos, pero contribuye muy poco en su propio desarrollo y no retornan reservas al árbol. El desarrollo del fruto es fuertemente competitivo con la raíz y con los brotes nuevos, demandando la mayor cantidad de recursos disponibles. Por lo tanto en etapas críticas del ciclo de crecimiento, los requerimientos para el desarrollo de la fruta y el crecimiento de los brotes bajan las reservas de los árboles. La estimulación de un crecimiento vegetativo vigoroso durante este período crítico, trae usualmente como resultados una caída excesiva de frutitos (WHILEY et al., 1988).

Posteriormente WHILEY (1990d) señala que el éxito de la formación de frutos durante los primeros 60 días posteriores a la floración depende de la disponibilidad de los fotosíntatos
almacenados de la fotosíntesis del momento (brotes de hojas maduras de verano) y del tiempo de transición de sink a fuente de los brotes que se renuevan en primavera. Por otra parte, señala que la magnitud de la segunda caída de frutos, al comienzo del período de verano en la etapa de crecimiento, está correlacionada directamente con la retención de fruta al madurar repentinamente.

WOLSTENHOLME, WHILEY y SARANAH (1990) demostraron que las condiciones ambientales desfavorables durante el verano aumentan las tasas de caída de fruta. Sin embargo, es probable que el mayor impacto de esta pérdida sea la limitación de reservas que se presenta antes de finalizar la madurez repentina de primavera.

El crecimiento de primavera en los paltos, coincide con la formación y desarrollo temprano de frutos, donde se presenta un desarrollo simultáneo de sinks altamente competitivos y se relacionan negativamente con el rendimiento. El crecimiento del brote en el verano, por el contrario, se correlaciona positivamente con el rendimiento sostenible, y es durante ese período que se conforma el estado nutricional del árbol (WHILEY, 1990b).

HERNANDEZ (1991) señala que la floración del cultivar Hass en la provincia de Quillota, se extendió hasta el 22 de noviembre. El desprendimiento de fruta de las panículas se produjo desde mediados de noviembre hasta mediados de abril, momento en el cual la muestra fue agotada. El peak de caída se registró a inicios de diciembre. A partir de mediados de enero se produjo una caída de frutos de baja intensidad respecto del peak anterior, pero persistente en el tiempo. Estos resultados coinciden con los obtenidos por SEDGLEY (1987).
SEDGLEY (1987) determinó que existe una caída de flores en las primeras semanas posteriores a la antesis, que corresponde principalmente a flores infertilizadas. Un mes después de la antesis ocurrió el mayor desprendimiento de frutos, los cuales eran normales y no encontró una razón que justificara el hecho. Sugiere que la competencia entre los frutos, y de ellos con el crecimiento vegetativo, pueden ser responsables de la abscisión.

La floración y por lo tanto la cuaja, coinciden con el flash de crecimiento vegetativo de primavera, es decir, estos eventos ocurren en forma simultánea y por lo tanto compiten por una fuente limitada de recursos. Es por por esto que el peak de desprendimiento de frutos ocurre después de la floración y del flash de crecimiento vegetativo de primavera. Aún que una continua caída ocurre luego del peak, esta no parece estar relacionada con el segundo flash de crecimiento vegetativo, ya que no se produce un incremento de ella durante este flash. Este desprendimiento podría estar relacionado con una competencia entre los frutos, por un nivel de reservas cada vez más reducido, puesto que el nivel de carbohidratos de reserva es bajo en verano y alcanza los mínimos valores durante el otoño, de acuerdo a lo señalado por HERNANDEZ (1991) y SCHOLEFIELD, SEDGLEY y ALEXANDER (1985).

CHANDLER (1962) señala que el fruto de palto presenta una curva de crecimiento simple sigmoidea, y que los procesos de división y elongación continúan durante todo el desarrollo.

SCHROEDER (1944) establece que las flores del palto nacen en inflorescencias que se desarrollan como racimos de panículas cerca de los brotes terminales. La yema terminal de la inflorescencia es del tipo mixta, es decir, da origen a un brote y también a flores (GARDIAZABAL y ROSENBERG, 1991).
La porción terminal del eje principal a partir del cual continúa el crecimiento en longitud, se mantiene vegetativa. El sistema de la yema frutal de este tipo, el cual es característico del palto, es llamado indeterminado. Ocasionalmente la punta de los brotes termina en una yema floral a partir de la cual no hay más crecimiento en longitud. Tales tipos de inflorescencia son llamadas determinadas (SCHROEDER, 1944).

El período de floración es diferente para los distintos cultivares. Algunos se mantienen en floración por siete a ocho meses, mientras que otros por uno a dos, pero para la mayoría de ellos la duración es de tres meses (MINAS, 1976).

Varios autores han sugerido que la temperaturas pueden ser causantes de bajas producciones o producciones irregulares en el palto (BRINGHURST, 1952; PETERSON, 1956; BERGH y WHITSELL, 1974; LESLEY y BRINGHURST, 1951; HERNANDEZ, 1991; PALMA, 1991).

La flor del palto cv. Hass es del tipo A, la primera abertura de la flor tiene lugar por la mañana, actuando exclusivamente como hembra, es decir, su estigma es receptivo; pero las anteras no producen polen. La polinización puede realizarse con polen de variedades del grupo B, que emiten polen durante el mismo período de la mañana. La flor cierra a medio día, para abrirse de nuevo al día siguiente por la tarde, actuando entonces exclusivamente como macho, ya que el estigma no está receptivo, pero sus anteras producen polen. Al final de la tarde se vuelve a cerrar la flor (GARDIAZABAL y ROSENBERG, 1991 y SEDGLEY, 1979a).

HERNANDEZ (1991) señala que la dicogamia tipo A descrita para el cultivar Hass, no se cumple bajo las condiciones ambientales de Quillota, V Región.
La parte no sexual consiste de 3 pétalos y 3 sépalos. La parte sexual de la flor consiste de 1 pistilo simple (femenino) en el centro y 2 verticilos de estambres (masculino) justo fuera del pistilo (3 adentro y 6 afuera). Dos nectarios en la base de cada estambre y tres estaminoides, alternando con los estambres completan el cuadro floral (BEKEY, 1989 y BERGH, 1969). El ovario es súpero, monocarpelar, unilocular, monospermo, con óvulo colgante, de sutura ventral (IBAR,1986).

GARDIAZABAL y ROSENBERG (1991) señalan que aparentemente la planta trata en principio que no cuaje la flor por su mismo polen y por eso es que la madurez del estambre supera a la del pistilo. Cuando un pistilo ya no está actuando, por la muerte del estigma, sólo entonces se levantan los estambres y generan el polen.

A pesar de la abundante floración de los paltos (cada árbol presenta numerosas inflorescencias, que poseen, a su vez, muchísimas florecillas), la producción de frutos suele ser escasa normalmente, lo cual significa que sólo alguna de las numerosísimas flores es fecundada y su ovario fértil llega a convertirse en fruto. La causa de ello es que, a pesar de ser las flores hermafroditas, pocos estigmas reciben el grano de polen fecundante, ya que al no madurar al mismo tiempo los estambres y el pistilo en cada flor, la polinización debe ser cruzada, por lo que el polen maduro de una flor se deposita en el estigma maduro de otra (IBAR, 1986).

El crecimiento floral en palto es el evento fenológico más importante, las flores tienen el potencial de aumentar sustancialmente la demanda hídrica durante el período crítico de cuaja (WHILEY et al., 1988).
Según GARDIAZABAL y ROSENBERG (1991), el palto es un árbol muy poco eficiente en cuanto a la cuaja, una buena producción se alcanza cuando cuaja una de cada mil flores que abren. Por lo tanto, el palto tiene que producir una cantidad mucho más grande de flores que otros frutales para originar una cosecha razonable. Sin embargo, a pesar de ser relativamente pequeño el porcentaje de flores que es necesario que cuaje para obtener una adecuada producción, en muchos casos no se logra ni siquiera esta cuaja mínima. Naturalmente que una de las causas básicas es el clima, y dentro del clima las temperaturas mínimas, puesto que pequeñas variaciones en éstas pueden tener mucha importancia. Ello no quiere decir heladas sino temperaturas relativamente bajas durante la floración.

Luego de la primera semana de terminada la floración, el 90% de los frutitos que caen no han sido fertilizados y de ellos un 18% es anormal. Cuatro semanas después de finalizada la floración todos los frutitos caídos fueron fertilizados y ninguno resulta anormal (las anormalidades incluyen ovarios con más de un saco embrionario u óvulo, saco embrionario inmaduro, óvulo en posición anormal y deficiencia en la estructura del óvulo) (SEDGLEY, 1980).

SCHROEDER (1942) señala que el polen de palto realmente germina en el estigma y observó (SCHROEDER, 1945) que los tubos polínicos de Fuerte penetraban el estilo a una distancia de 0,139 mm en una hora, bajo los condiciones de Los Angeles, y la distancia final recorrida fue de aproximadamente 4 mm. De acuerdo con esto el tubo polínico demoraría 28,5 horas en fertilizar la ovocélula. Sin embargo, en otro ensayo realizado por el autor, el tiempo requerido fue de 44 horas. Las diferencias aquí señaladas pueden encontrar bases en el hecho de que las condiciones climáticas y sobre todo la temperatura juegan un rol regulador de la velocidad de desarrollo del tubo polínico.
SEDGLEY (1977) observó que el desarrollo del tubo polínico en paltos es altamente competitivo, uno o dos tubos polínicos alcanzan el ovario, la selección toma lugar en la mitad superior del estilo.

Por otra parte, SEDGLEY (1977) señala que con temperaturas entre 12 y 17 °C se produce una alteración del ciclo normal de floración, se retarda el desarrollo del tubo polínico y resulta una carencia de desarrollo embrionario. A temperaturas de 28 y 33 °C el desarrollo reproductivo parece estar reducido en favor del desarrollo vegetativo, como se muestra por la reducción de las dimensiones de las partes florales y por el desarrollo anormal del tubo polínico, resultando una abscisión de flores y de frutitos jóvenes. La rápida germinación del polen y penetración del ovario se observó a temperaturas entre 20 y 25 °C, en un tiempo de entre 2 y 5 horas. Más de un tubo fue observado penetrar el ovario en cada pistilo polinizado, indicando una alta eficiencia en el mecanismo de polinización.

En un ensayo in vivo realizado por PAPADEMETRIOU (1975) en la zona de Trinidad, el desarrollo del tubo polínico en palto fue estudiado por medio de fluorescencia. La penetración del tubo polínico en el ovario ocurrió al cabo de una hora.

Generalmente, los granos de polen tienen un solo tubo polínico. Sin embargo, se han visto dos tubos polínicos salir de un mismo grano, en algunas oportunidades (PAPADEMETRIOU, 1975).

SEDGLEY (1979a), al realizar polinización cruzada con polen de diferentes variedades, encontró que el control genético era evidente y que la parte femenina ejerce más control que la masculina sobre el número de tubos polínicos y penetraciones ovulares. Luego señala que entre un 5% y un 100% de los óvulos en cada cruzamiento fue penetrado por medio de un tubo polínico
y que la cantidad de óvulos penetrados dependió de las características femeninas. En el caso de Hass, al igual que en casi todas las flores de tipo A, presentó una alta cantidad de óvulos penetrados; siendo las variedades de tipo A más uniformes en el porcentaje de penetración. La penetración del óvulo por dos tubos fue frecuentemente observado en Jalna y en Hass, pero no tanto en Reed y Fuerte.

Aparentemente, la variabilidad entre el número de tubos polínicos en el estilo y el estigma en una variedad no fue tan alta entre una polinización y otra como para afectar el número de óvulos penetrados, es más probable que se pueda deber al número de granos de polen depositados en el estigma, de acuerdo con lo observado por SEDGLEY (1979a).

Es posible que en algunos casos de penetración múltiple, ésta pueda ser un resultado de la ramificación de un único tubo polínico. Alternativamente, las ramificaciones pueden comportarse como un australio que transfiere nutrientes para el desarrollo del embrión (SEDGLEY, 1979a).

SEDGLEY (1979a) señala que si bien el genotipo del polen puede ejercer alguna influencia sobre la flor, en general ésta no tiene mayor importancia en la producción. La mayor importancia puede encontrarse en permitir la polinización cruzada.

Si la polinización es adecuada y muchos granos de polen son depositados en el estigma, la variación en el desarrollo del tubo polínico no será ningún problema en la producción de fruta; pero en situaciones donde sólo uno o muy pocos granos de polen se depositan en el estigma, debido a una polinización inadecuada, tal variación en el desarrollo del tubo polínico podría disminuir la producción. En tales circunstancias algunos tubos sólo tendrán un crecimiento limitado, por lo cual muchos de ellos jamás
alcanzarán el óvulo, o por el lento crecimiento o tal vez se retrasa la germinación del polen, y cuando éste alcance la ovocélula pueda ella no estar en condiciones para la fertilización (PAPADEMETRIOU, 1975).

SEDGLEY (1979b), al estudiar al microscopio el comportamiento del polen de Fuerte y Hass, observó que el óvulo fue penetrado por el tubo polínico 24 horas después de la polinización. Al alcanzar el ovario, el tubo polínico creció a lo largo de la superficie interna de la pared ovárica. Luego creció alrededor del funículo, a través del tegumento interior del micrópilo y entre las células de la papila y hasta el ápice del nucelo.

SEDGLEY (1979b) observó que en Hass cerca del 60% de los sacos embrionarios fueron penetrados, en tanto que en Fuerte menos del 20% logró hacerlo. Se concluyó que los bajas producciones en la variedad Fuerte pueden ser en parte atribuidas a la falta de penetración de los sacos embrionarios por los tubos polínicos.

GARDIAZABAL y ROSENBERG (1991) señalan que el polen no muere rápidamente, sino que éste tendría una viabilidad de 72 horas. Por esta razón podría quedar vivo en un insecto para llegar más tarde a polinizar flores femeninas, cuando éstas estén abiertas.

WHILEY (1990b) señala que al analizar los rangos críticos establecidos para boro en paltos por EMBLETON y JONES (1964), muestra de hecho que el rango para los nutrientes no reguladores es de 100-400% de la concentración base donde el crecimiento se nivela. Por lo tanto, dado que las concentraciones de nutrientes no reguladores se ajustan dentro de ese amplio margen, existen muy pocas expectativas de un impacto, tanto en el crecimiento como en el rendimiento.
Las hojas maduras más jóvenes del crecimiento de verano recolectadas en el otoño cuando todo el crecimiento en el árbol está detenido, han llegado a reflejar el estado nutricional del árbol en relación al desempeño del rendimiento posterior. Son las hojas de estos brotes las que se han convertido en una fuente de nutrientes móviles para la floración, formación de frutos y crecimiento de brotes en la primavera (WHILEY, 1990b).

Para el análisis foliar, es importante elegir las hojas cuando el árbol no está creciendo activamente. Esto está relacionado con la estabilidad de los nutrientes en esa etapa. Es importante recolectar las hojas antes de que haya demasiado desarrollo floral, ya que hay traslocación de éstos hacia las partes florales (WHILEY, 1990a).

El crecimiento de brotes esporádicos se produce en una canopia compuesta de hojas de edades y eficiencia variable (WHILEY et al., 1990c). Las hojas pueden almacenar grandes cantidades de carbohidratos y minerales que se reciclan durante los períodos de demanda (PALMA, 1991).

WHILEY (1990a) señala que en Florida, U.S.A., los paltos han sido plantados en suelos limosos, pobres, con pH alto y altos niveles de Ca, cerca de 12-13 mg/kg. A estas concentraciones se deprime severamente la absorción de boro; con pH mayor a 7, la disponibilidad de boro es muy baja. La mayoría de los países productores de paltos presentan algunos de estos problemas para absorber el boro, pero Sud-Africa y Australia poseen suficiente boro en forma natural.

Para realizar una evaluación de productividad en paltos se requiere de al menos 15 árboles por tratamiento, de otra manera
la alta variabilidad de los huertos sólo permitirá obtener resultados parciales en la mayoría de los casos (KÖHNE, 1992)*.

2.5. EL boro en palto:

LABANAUSKAS et al. (1961) señalan al analizar los contenidos foliares de boro en paltos, que durante el primer año de un ensayo mientras el contenido de nitrógeno en el suelo se mantuvo alto y en las hojas en un 2%, la concentración de boro foliar se notó constante en un nivel de 30 ppm. En tanto, en el tercer año el nivel de nitrógeno disminuyó y el de boro en las hojas nuevas se incrementó hasta 50-60 ppm, para posteriormente disminuir a 30 ppm en hojas completamente maduras.

En el ensayo realizado por ROBBERTSE, COETZER y BESSINGER (1991), asperjaron 2 g/l de Solubor hasta escurrir a arboles con las siguientes características: con yemas florales a punto de abrir (Ta), con yemas florales a punto de abrir y luego en la antesis de las primeras flores de la panícula (Tb), y por último sólo en la antesis de las primeras flores de la panícula (Tc); más un testigo sin aplicación (T0). Las hojas muestreadas a inicios de primavera, señalan que las aspersiones a fines de otoño a yemas florales a punto de abrir (Ta y Tb) no producen incrementos en los contenidos foliares de boro en hojas maduras del flush de verano anterior, lo cual fue reafirmado en la temporada siguiente. El muestreo de fines de primavera señala que las hojas primaverales tenían altos contenidos de boro, afectadas por las aspersiones de fines de otoño a yemas florales a punto de abrir y

por las aspersiones de inicios de primavera a panículas cuyas flores estaban iniciando la antesis (Tb y Tc), siendo más significativo el efecto en la aplicación conjunta (Tc); sin embargo, en la temporada siguiente la aplicación exclusiva a las primeras flores en antesis de la panícula fue la única que tuvo contenidos de boro más altos que los otros tratamientos (Tc). El muestreo hecho a fines del otoño siguiente no señaló diferencias entre los tratamientos; sin embargo, nuevamente se pudo constatar un descenso en el contenido foliar de boro. El muestreo en el período invernal no determinó diferencias entre los tratamientos, pero sí se observó un contenido de boro mayor que en el muestreo otoñal (realizado dos meses antes).

En el mismo ensayo ROBBERTSE, COETZER y BESSINGER (1991) señalan que el muestreo de inflorescencias realizado en el invierno del primer año, mostró niveles de boro comparativamente altos en los tratamientos de yemas florales a punto de abrir (Ta y Tb), a pesar de que no se habían realizado y completado aún las aspersiones a las panículas con flores en antesis. La evaluación de productividad realizada el invierno siguiente mostró, aunque no significativamente, que el mayor resultado se obtuvo en el tratamiento en que se aplicó Solubor a yemas florales a punto de abrir (Ta), lo que coincidiría con los resultados de las inflorescencias realizadas el invierno anterior. Los valores obtenidos en la cuaja del segundo y tercer año señalan un mayor resultado en los tratamientos en que se hizo una aplicación conjunta a yemas florales a punto de abrir y en la antesis de las primeras flores de la panícula (Tb), y en el que únicamente se aplicó en la antesis de las primeras flores de la panícula (Tc). Sin embargo, las concentraciones de boro en el tercer año fueron menores. Las diferencias obtenidas entre las temporadas puede atribuirse al hecho que la floración del tercer
año partió unas semanas más tarde, y también a las fluctuaciones naturales en la concentración de boro en la temporada.

Los mismos autores señalan que tanto el contenido de boro en las hojas como la producción de fruta pueden presentar diferencias entre temporadas, lo que se explicaría en parte por el hecho que los altos contenidos de nitrógeno en una temporada pueden hacer disminuir el contenido de boro en la misma y por ende los niveles foliares y productivos.

ROBBERTSE y COETZER (1988) establecen que para un óptimo crecimiento del tubo polínico en paltos, la concentración de boro requerida en las flores debe ser cerca de 100 mg/kg.

COETZER y ROBBERTSE (1987) en un ensayo realizado en Transvaal, Sud-Africa, en las variedades Hass y Fuerte, señalan como árboles saludables a aquellos que presentaban en sus análisis foliares 15 ppm de boro y deficientes a aquellos que presentaban 7 ppm.

COETZER y ROBBERTSE (1987) demostraron in vivo que el boro en una cantidad óptima ejerce una influencia positiva en el tubo polínico. Ellos trabajaron con polen y pistilos de las variedades Hass y Fuerte, que provenían de árboles saludables, deficientes y deficientes con suplementación de boro. Al utilizar polen saludable de Hass y pistilos de Fuerte, encontraron que no obstante la pequeña cantidad de granos de polen que germinaron en los estigmas deficientes en boro, la mayoría de los tubos polínicos detuvieron su crecimiento aproximadamente en la base del estigma. En cambio, los granos de polen que se desarrollaron a partir de estructuras saludables presentaron significativamente más tubos polínicos por estilo y se mostraron más activos y con crecimientos prolongados.
Los mismos autores al utilizar esta vez pistilos saludables de Hass y polen de Fuerte, encontraron que al utilizar polen saludable el desarrollo del tubo polínico fue significativamente mejor que cuando se realizó con polen deficiente en boro. Sin embargo, al realizarlo con pistilos saludables suplementados con boro y polinizados con polen deficiente en boro, el resultado fue aún mejor que en los dos anteriores. Por lo cual concluyeron al comparar ambos ensayos que la influencia negativa de la deficiencia de boro es altamente más pronunciada en el pistilo que en el polen y que la adición de boro a flores de palto tiene un efecto significativamente positivo en el desarrollo in vivo del tubo polínico.

ROBBERTSE et al. (1990), en un ensayo semi vivo señalan que el mejor desarrollo del tubo polínico ocurrió cuando la concentración de boro en las hojas estaba entre 50 mg/kg y 75 mg/kg. Una aspersión foliar con Solubor (1000 mg/dm cúbico) y una aplicación al suelo (3 kg/h) incrementaron significativamente la concentración de boro en las hojas, pero no lo suficiente para un óptimo desarrollo del tubo polínico y cuaja.

LABANAUSKAS, STOLZY y ZENTMYER (1978) observaron que con un bajo abastecimiento de oxígeno en las raíces de plantas de palto, se producía una disminución en la concentración de N, P, K, Ca, Mg, y boro, e incrementándose el Na y el Fe en la parte aérea.

Una experiencia con plantas de palto provenientes de semilla mostró que la combinación hoja y tallo contenía concentraciones significativamente menores de N, P, K, y boro, y altas concentraciones de Na, Mn y Fe, cuando el agua fue mantenida a la mitad de la columna de agua (5 cb) en un período de 35 días (LABANAUSKAS, STOLZY y ZENTMYER, 1978).
LABANAUSKAS, EMBLETON Y JONES (1958) señalan que en aquellas hojas muestreadas de palto que tenían niveles altos de nitrógeno el contenido de zinc, cobre y boro era significativamente menor que en aquellas en las que el contenido de nitrógeno era más bajo.

De acuerdo a lo señalado por GARDIAZABAL y ROSENBERG (1991), la extracción de boro en un huerto de paltos para obtener una producción de 10 mil kg/ha., es de 0,04 kg/ha.

EMBLETON y JONES (1966) señalan que la concentración estándar de boro para análisis foliar en árboles adulto, cuyas muestras han sido recolectadas en abril, corresponde a: deficiente, entre 10 y 20 ppm; óptimo, entre 50 y 100 ppm; exceso, entre 100 y 250 ppm. De acuerdo a lo que señalan los mismos autores, estos rangos no son definitivos y deben ser delimitados aún más.

La deficiencia de boro causa una muerte gradual de centros de crecimiento. Las hojas se distorsionan, a veces con depresiones, se tornan lanceoladas y tienen zonas necróticas. En hojas aparecen zonas corchosas. La fruta se deforma apareciendo en forma aperada. Aplicaciones de 5 kg/ha de boro es suficiente para corregir la deficiencia. También, se pueden realizar aplicaciones de boro al follaje (GARDIAZABAL y ROSENBERG, 1991).

WHILEY (1990a) señala que hay niveles altos de boro en las hojas desde principios de verano y hasta inicios del otoño, para luego comenzar a decrecer hacia el invierno. Se presenta un alza cuando el boro va a ser movilizado hacia las hojas.

WHILEY (1990b) señala que existe una removilización de boro intensa y rápida durante el invierno desde las hojas maduras a las panículas de flores en desarrollo. De este modo, se deberían aprovechar las oportunidades para ajustar las concentraciones de boro en el árbol durante los meses de verano, con el fin de
asegurar una fuente adecuada de boro durante el período crítico primaveral.

En Australia, el boro se aplica usualmente en el suelo y las investigaciones han demostrado que el árbol soportará tasas diez veces mayores que el equivalente a los cítricos y mangos (WHILEY, 1990b).

WHILEY (1990a) señala que son tres los micronutrientes que tienen mayor influencia sobre la calidad de la fruta si es que éstos se encuentran deficientes; ellos son B, Zn y Ca. La deficiencia de boro provoca fruta deformada, puesto que este microelemento estaría relacionado con la formación de la pared celular.

WHILEY (1990a) ha denominado al P, K, Ca, Mg, S, Cu, Zn, Mn, Fe y B como elementos no determinadores del crecimiento, puesto que la planta permite un gran rango de variación de la concentración en que son requeridos.

WHILEY (1990b) señala que el boro está estrechamente asociado con la división celular y la actividad meristemática y es particularmente importante durante la polinización y el desarrollo temprano del fruto.

WHILEY (1990a) señala que el boro es un microelemento relacionado con la división celular, es por ello que a éste no debería encontrársele en verano en las hojas puesto que se encontraría bajo por el activo crecimiento del resto de la planta. Es así como señala que en la medida que avanza la floración se observa una fuerte traslocación de este nutriente hacia los órganos florales. Las hojas actúan como reservorio de nutrientes porque en el invierno no hay temperaturas suficientes como para realizar absorción, y además, porque la falta de riego durante el invierno provoca un serio daño a las raíces, por lo cual serán las
hojas las han de actuar como abastecedor del árbol a inicios de primavera, cuando las temperaturas sean aún demasiado bajas como para una absorción adecuada.

De acuerdo con los ensayos realizados por WHILEY (1990b), la concentración de boro en las hojas en otoño sería de aproximadamente 42(mg/kg), para luego disminuir hacia el invierno alcanzando aproximadamente 25(mg/kg) y llegar por último en primavera, justo en floración a aproximadamente 6(mg/kg) en las hojas y 25(mg/kg) en las flores.

Haciendo referencia a los portainjertos y su relación con el boro WHILEY (1990a) señala que otro factor que influye sobre la absorción de boro es el portainjerto. En Australia y Sud-Africa la experiencia indica que los portainjertos mexicanos poseen menos capacidad de absorción que la raza guatemalteca. En Sud-Africa esto ha quedado demostrado al cambiar del portainjerto Edranol, de raza guatemalteca, al portainjerto clonal Duke7, obteniendo inmediatamente manifestación de deficiencia en los árboles. En Australia en experiencias similares, donde se ha probado Duke 7 y Mexicola, ha habido inmediatamente problemas en la absorción de boro.

La hoja del palto presenta un medio hostil para la absorción de nutrientes aplicados foliarmente. Varios análisis foliares han entregado resultados que no han demostrado que exista una deficiencia de Zn o B. Sin embargo, cree más en lo que muestra la condición del árbol. En la mayoría de los casos, el productor ha aplicado B o Zn foliarmente. La técnica estándar de lavar las hojas previo al análisis, no remueve la contaminación de estos nutrientes que quedan atrapados en la cutícula cerosa de la hoja, de manera que el análisis de estas hojas no refleja la verdadera situación del árbol.
El mismo autor señala que debido a la capa cerosa que tienen las hojas del palo, la posibilidad para lograr una eficiente absorción de nutrientes aplicados foliarmente, es asperjando antes de que se forme la cutícula, esto es durante la expansión de las hojas nuevas.

Por otra parte, señala que las inyecciones al tronco para solucionar deficiencias se justifica en aquellos países que realizan las inyecciones por otras razones más, como aplicaciones de ácido fosforoso para controlar Phytophthora cinnamomi Rands. De esta forma en Australia ha tenido gran difusión las inyecciones al tronco con quelatos y nitratos de Zn, pero al usar estas formulaciones el tiempo de penetración puede ser dieciocho veces mayor. WHILEY et al. (1991) dicen que los quelatos de Zn se demoran el doble del tiempo que los nitratos de Zn.

WHILEY et al. (1987) encontraron en árboles enfermos por Phytophthora cinnamomi Rands que disminuyeron las concentraciones foliares de nitrógeno, fósforo, azufre, zinc y boro. Sin embargo, las concentraciones de nutrientes, con excepción del zinc y el boro, se recuperaron rápidamente cuando fueron inyectados con fosfonato de potasio (20%) y manteniendo las fertilizaciones de acuerdo a los requerimientos de la estación. Los resultados pueden atribuirse a la restauración de la salud del sistema radicular, además de la capacidad del boro para expandir la zona de raíces.

WHILEY et al. (1991) señalan que las inyecciones al tronco de fosfonato al 7,5% permiten el uso de formulaciones químicas compatibles que contengan zinc y boro, los cuales cuando son inyectados incrementan las concentraciones de estos nutrientes en hojas maduras del crecimiento de verano. Las formulaciones de fosfonatos con 0,9% de boro, inyectadas durante la temporada de crecimiento a razón de 15 ml/m de diámetro de canopia,
mejoraron la concentración de boro en las hojas, pero no alcanzaron la concentración umbral crítica de 50 mg/kg DM. Por otro lado, WHILEY señala que en un ensayo anterior al inyectar una formulación de ácido bórico (2%), tampoco lograron alcanzar dicho umbral.

WHILEY *et al.* (1991) señalan que las formulaciones de fosfonatos que contengan boro y sean inyectadas al tronco, pueden incrementar la concentración foliar de boro en 10 mg/kg MS como máximo.

WHILEY (1990a) señala que existen residuos en la fruta cuando se hacen aplicaciones de boro, lo cual se debe considerar para la exportación. Las tolerancias fijadas son: 100 mg/kg para Australia, 25 mg/kg para Europa y Sud-Africa.

2.5.1. Deficiencia de boro en paltos:

Los primeros indicios de deficiencia de boro en Australia, se registraron en Queensland, según WHILEY (1990a). Arboles plantados sobre Mexiícola presentaban clorosis, crecimiento escaso y rastrero, en cambio los árboles injertados sobre el patrón Velvick, de origen guatemalteco, no presentaban estos problemas.

Si bien se ha descrito ciertos síntomas típicos de la deficiencia de boro, cada cultivar las expresa en forma diferente. En algunos cultivares sensibles, las frutas aparecen deformadas, con una curva cerca del cuello que deja una depresión similar al ombligo de una naranja, no obstante, eso es difícil de observar en el cv. Hass. En casos severos de deficiencia el pedúnculo además está descentrado (WHILEY, 1990a).
BARNARD, CILLIE y KOTZE (1991) observaron que la deficiencia de boro muestra síntomas muy definitivos. Ocurre decoloración del crecimiento terminal, así como quemadura y distorsión de las hojas. La nercadura se raja y se vuelve corchosa.

El boro también está implicado en la floración, es muy importante para la germinación del polen al descender por el estigma. En casos muy severos aparecen cancros en la estructura del árbol, lo cual por mucho tiempo había quedado en manos de los patólogos, puesto que éste se relacionaba más con un patógeno que con una deficiencia que permite el ingreso a un patógeno como efecto secundario. Los cancros se suelen manifestar en árboles que presentan un estrés de boro (WHILEY, 1990a).

ROBBERTSE et al. (1990) señalan que la deficiencia de boro reduce la viabilidad del polen.

El nitrógeno no compite con el boro en términos de absorción a través de las raíces; sin embargo, si hay un exceso de nitrógeno, hay un efecto de dilución de la mayoría de los elementos en el árbol debido al excesivo crecimiento vegetativo. El mayor competidor del boro es el Ca; altos niveles de Ca deprimen la absorción de boro del suelo (WHILEY, 1990a).

El contenido de materia orgánica en el suelo puede ser importante en términos de nutrición de Zn y B. Los sustratos orgánicos tienen muchos sitios en los cuales los nutrientes pueden adsorberse y en muchos casos estos pueden formar enlaces que fijan los nutrientes con boro. En Australia, en suelos con altos contenidos de materia orgánica y pH 5,3-5,8, puede haber una efectiva absorción de boro del suelo dentro de los 2-3 meses después de aplicado (WHILEY, 1990a).

Existen antecedentes de que los huertos de paltos en Chile se encuentran con bajos contenidos de boro, de acuerdo a los
análisis foliares y a las deficiencias visuales que se pueden ver en la fruta. Por otra parte es de esperar que esto ocurra debido a que el patrón utilizado es un franco de Mexícola, el que ha sido descrito por WHILEY (1990a) como un mal absorbedor de boro al igual que todos sus parientes de raza mexicana en comparación con los de raza guatemalteca, situación que ha sido verificada en Australia y Sudáfrica.
3. MATERIAL Y METODO.

3.1. Localización:

La investigación se llevó a cabo en el fundo "El Chuico Blanco", ubicado en la localidad de Romeral, comuna de Hijuelas (32º50' Latitud Sur), provincia de Quillota, V Región, Chile.

La investigación se realizó entre los meses de noviembre y octubre de los años 1991 y 1992, respectivamente.

De acuerdo a la clasificación climática de Köppen, Quillota está dentro de la notación Csbl, que corresponde a un clima templado cálido con estación seca prolongada (7 a 8 meses), con temperatura media mensual superior a 10 ºC por más de cuatro meses (MARTINEZ, 1981).

El régimen térmico de esta zona, se caracteriza por una temperatura media anual de 15,3 ºC, con una máxima media del mes más cálido (enero) de 27 ºC y una mínima media del mes más frío (julio) de 5,5 ºC. El período libre de heladas aprovechable es de 9 meses, de septiembre a mayo. La suma anual de temperaturas, base 5 ºC, es de 3700 grados días y de 10 ºC (MARTINEZ, 1981).

La hoya del río Aconcagua tiene precipitaciones de tipo ciclónico y orográfico. En tanto, la humedad relativa en la zona es más bien alta, siendo uniforme a lo largo del año, presentándose en forma más alta en los meses de invierno y durante las primeras horas de la mañana (MARTINEZ, 1981).
3.2. Elección de la muestra:

Se utilizaron 24 árboles del cultivar Hass para el ensayo al follaje y 36 árboles del cultivar Hass para el ensayo al suelo, más 4 árboles para el testigo. Los árboles están plantados a una distancia de 9,3 x 9,3 (m). La edad de éstos es de 8 años. El portainjerto utilizado es Mexicola. El sistema de riego corresponde a un número variable de 5 a 8 goteros por planta, con una capacidad de descarga de 4 litros por hora.

El huerto se encuentra ubicado en la ladera Sureste. Como tal su profundidad es variable, sin embargo, puede considerarse que un metro es representativo del perfil. La pendiente es de un 10%. El suelo corresponde a un suelo de textura Francoarcillosa.

Para obtener una muestra homogénea se utilizaron los siguientes criterios de selección: tamaño, vigor, estado sanitario y diámetro de tronco.

-El tamaño de los árboles fue medido en metros cuadrados de superficie y metros cúbicos de canopia.

-El vigor se midió con las categorías alta, media y baja. Además, se caracterizó los árboles de acuerdo a su estado productivo en el año de evaluación, en las categorías alta, media y baja.

-El diámetro de tronco fue medido en centímetros. El estado sanitario en categorías A, B y C.

Se utilizaron finalmente los árboles más homogéneos, aislándolos entre sí, de tal forma de evitar la interacción entre los mismos.
3.3. **Tratamientos**:

3.3.1. Ensayo aplicación al follaje:

En este ensayo se utilizaron dos productos y tres dosis para cada uno. Las aplicaciones se realizaron el 21 de octubre de 1991, con un 50% de flor aproximadamente.

Se empleó una pulverizadora PARADA de 1500 litros de capacidad. Los productos fueron aplicados con pitón, mojando abundantemente el follaje. La dosis para cada árbol fue calculada a partir de los metros cúbicos de canopia por árbol.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Dosis (P.C./ha.)</th>
<th>Dosis (Boro/ha.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T10: Acido Bórico</td>
<td>2,5 kg</td>
<td>0,4375 kg</td>
</tr>
<tr>
<td>T11: Acido Bórico</td>
<td>7,5 kg</td>
<td>1,3125 kg</td>
</tr>
<tr>
<td>T12: Acido Bórico</td>
<td>15,0 kg</td>
<td>2,6250 kg</td>
</tr>
<tr>
<td>T13: Boro Floable</td>
<td>1,25 lt</td>
<td>0,1875 kg</td>
</tr>
<tr>
<td>T14: Boro Floable</td>
<td>2,50 lt</td>
<td>0,3750 kg</td>
</tr>
<tr>
<td>T15: Boro Floable</td>
<td>5,00 lt</td>
<td>0,7500 kg</td>
</tr>
</tbody>
</table>

3.3.2. Ensayo aplicación al suelo:

En este ensayo se utilizaron cuatro productos en tres dosis por cada producto. Se aplicó 2/3 de la dosis el 17 de diciembre de 1991 y el tercio restante el 21 de febrero de 1992.
La dosis aplicada por árbol se calculó de acuerdo a los metros cúbicos de canopia. Los productos se aplicaron al suelo repartidos en los goteros.

T1: Ácido Bórico
60 kg P.C./ha.
10,5 kg Boro/ha.

T2: Ácido Bórico
80 kg P.C./ha.
14,0 kg Boro/ha.

T3: Ácido Bórico
100 kg P.C./ha.
17,5 kg Boro/ha.

T4: Bórxax
100 kg P.C./ha.
10,40 kg Boro/ha.

T5: Bórxax
135 kg P.C./ha.
14,00 kg Boro/ha.

T6: Bórxax
168 kg P.C./ha.
17,47 kg Boro/ha.

T7: Boro Floable
10 kg P.C./ha.
1,5 kg Boro/ha.

T8: Boro Floable
20 kg P.C./ha.
3,0 kg Boro/ha.

T9: Boro Floable
30 kg P.C./ha.
4,5 kg Boro/ha.

El tratamiento T0 corresponde al testigo sin aplicación alguna.

3.4. Mediciones:

Para evaluar el efecto de las aplicaciones al follaje se dispusieron cuatro cajones cosecheros de 0,24 metros cuadrados bajo la periferia de la canopia de cada árbol, ubicados en los cuatro puntos cardinales. Semanalmente se recogieron las flores caídas y se contaron, separándolas entre flores y frutitos cuajados. Además, se pesaron en seco los frutitos utilizando para ello una balanza analítica.
Previo a hacer las aplicaciones (20 de octubre de 1991), se tomó un análisis de tejido foliar a un promedio de árboles estadísticamente representativo del huerto. Tres semanas después de hecha ésta (11 de noviembre de 1991), se muestrearon los árboles de cada tratamiento realizando un análisis de tejido foliar.

El 18 de marzo de 1992 se muestrearon todos los tratamientos de ambos ensayos, realizando un análisis de tejido foliar. Posteriormente se repitió el análisis el 14 de abril de 1992, pero separando los análisis de acuerdo a la categoría de producción alta o baja.

Para todos los análisis tomados hasta abril de 1992, se utilizaron hojas maduras, del tercio medio, de ramillas sin fruta, provenientes del flash anterior y recolectadas a una altura de 1,5 a 2,0 metros.

El 23 de junio de 1992 se muestrearon los árboles del ensayo al suelo, realizando un análisis de tejido foliar. Se evaluaron en forma separada los árboles de las categorías de producción alta y baja de cada tratamiento. En ellos se muestrearon:

- Hojas originadas en el flash de primavera, sin desarrollo en el flash de verano.

- Hojas originadas en el flash de primavera, con desarrollo en el flash de verano.

- Hojas originadas en el flash de verano.

El procedimiento de muestreo fue el mismo descrito anteriormente, variando solamente el origen de la hoja a muestrear. Para todos los análisis foliares realizados se recolectó la lámina de la hoja con su pecíolo.
Previo a la cosecha se recolectaron seis paltas por repetición de los tratamientos al suelo más el testigo, para medir el contenido de aceite. La evaluación se realizó según el método descrito por MARTINEZ (1984), y utilizando la curva señalada por el mismo autor.

La cosecha se realizó la última semana de septiembre. En el ensayo al follaje se evaluó para cada tratamiento:
- Nº de frutos
- Kilogramos Totales

A los tratamientos al suelo y al testigo se les evaluó:
- Nº de frutos
- Kilogramos Totales
- Diámetro ecuatorial, diámetro polar (milímetros) y peso (gramos) de frutos.

El 27 de octubre 1992 se hizo un análisis de tejido floral a todos los tratamientos, para lo cual se recolectaron panículas compuestas por las flores y los pedúnculos de las panículas.

La categorización de calibre utilizada es:

<table>
<thead>
<tr>
<th>Peso</th>
<th>Calibre</th>
</tr>
</thead>
<tbody>
<tr>
<td>-menos de 150 gr</td>
<td>80 o más</td>
</tr>
<tr>
<td>- 150 a 175 gr</td>
<td>70</td>
</tr>
<tr>
<td>- 175 a 205 gr</td>
<td>60</td>
</tr>
<tr>
<td>- 205 a 250 gr</td>
<td>50</td>
</tr>
<tr>
<td>- 250 a 295 gr</td>
<td>40</td>
</tr>
<tr>
<td>-más de 295 gr</td>
<td>30 o menos</td>
</tr>
</tbody>
</table>
3.5. **Análisis estadístico**:

Para el análisis de las variables se utilizó un Diseño Completamente al Azar, considerando cuatro réplicas por tratamiento.

Al existir efecto significativo de los tratamientos se procedió a la prueba de Comparaciones Múltiples de TUKEY.
4. PRESENTACION Y DISCUSION DE RESULTADOS

4.1. Ensayo aplicación al follaje:

El número de flores caídas no fue analizado estadísticamente, sin embargo, las curvas de caída de flores mostraron resultados similares a los descritos por HERNANDEZ (1991). Solamente en forma descriptiva se puede señalar que no hubo diferencias entre los tratamientos (Figuras 1 y 2).

En la primera semana de noviembre se observó un descenso en el número de flores caídas, el cual siguió disminuyendo hasta la primera semana de diciembre, a partir de la cual el número de flores caídas fue ostensiblemente reducido, para finalizar la caída en la primera semana de enero. Los resultados de HERNANDEZ (1991) difieren en la época de término debido tal vez a lo reducido de su muestra, a las condiciones del año o a la metodología empleada.

El número de frutitos caídos tampoco fue analizado estadísticamente, sin embargo, las curvas de caída de frutitos mostraron resultados similares a los descritos por HERNANDEZ (1991). Sólo en forma descriptiva se puede señalar que no hubo diferencias entre los tratamientos (Figuras 3 y 4).

Durante las primeras semanas de noviembre se observó un incremento en el número de frutitos caídos, llegando éste a su máximo durante la tercera semana de noviembre, para luego disminuir significativamente hasta la primera semana de diciembre, a partir de la cual, se mantuvo la caída disminuyendo levemente hasta mediados de febrero. Finalmente esta se redujo.
ROBBERTSE, COETZER y BESSINGER (1991) señalan que los mejores resultados de cuaja los obtuvieron al realizar aplicaciones de Solubor al follaje a yemas florales a punto de abrir y posteriormente en la antesis de las primeras flores de la panícula, y sólo en la antesis de las primeras flores de la panícula, por lo cual, el hecho que no se hayan observado resultados tanto en la caída de flores como en la de frutos puede atribuirse a que la época de aplicación fue tardía, ya que las aspersiones se realizaron con una floración estimada en un 50%.

Los pesos de los frutos caídos no fueron analizados estadísticamente. Sólo en forma descriptiva se puede decir que no hubo diferencias evidentes entre los tratamientos al contrastar las curvas de peso de los frutos caídos (Figuras 5 y 6).

Al observar las curvas de los pesos de los frutos caídos, se puede ver que ésta se comportaría como una sigmoídea. Durante la última semana de noviembre se presentó un incremento en el peso que se mantuvo levemente en alza hasta la última semana de enero. A partir de la primera semana de febrero se observó un fuerte incremento en los pesos de los frutos caídos, para luego estabilizarse en una tasa de crecimiento sostenida, aunque más pequeña, desde mediados de marzo y hasta las últimas mediciones de abril.

Los resultados obtenidos a partir de enero son coincidentes con los de HERNANDEZ (1991) en igual fecha, al describir la curva de desarrollo del fruto de palto, sin haberse abscisionado, es decir, en las mismas fechas la curva de pesos de frutos caídos se presenta similar a la curva de crecimiento del fruto descrita por el autor antes señalado.
Es importante señalar que en los primeros estados de la floración el peso de los frutitos caídos es bajo, en tanto el número de ellos es alto. Razón por la cual en este período es importante considerar que si fuera posible aumentar levemente el porcentaje de frutitos cuajados, es decir, durante el período comprendido entre la antesis y las últimas semanas de noviembre, los resultados de producción pudieran ser mayores, por cuanto se tendría más frutos disponibles en la cosecha, pero dependientes de la capacidad de sustentación propia del árbol.

El número de frutitos que caen a partir de febrero es bajo, sin embargo, su peso es alto y creciente, si se le compara con los que caen durante la primavera.

Durante la primavera el evitar la caída de frutos es importante por cuanto significa un aumento del porcentaje de cuaja; mientras que el evitar la caída de los frutos de mediado de verano en adelante, significa disminuir una alta pérdida energética en un período en el cual el contenido de carbohidratos disponibles es bajo, aunque en ascenso de acuerdo a lo señalado por WHILEY (1990d), WOLSTENHOLME, WHILEY y SARANAH (1990) y SCHOLEFIELD, SEDGLEY y ALEXANDER (1985).

El incrementar el porcentaje de cuaja, favorece la producción en aquellos árboles equilibrados que están en condiciones de sustentar más fruta, pero en árboles desequilibrados o con una cuaja abundante, este hecho puede ser detrimental por cuanto los árboles no serían capaces de sustentar tanta fruta, agravando además la situación de bimanualidad productiva, o al menos la competencia en los primeros estados de desarrollo de las flores y los frutitos. A menos que se realicen prácticas culturales alternativas en los árboles con una cuaja excesiva.
Disminuir la caída de frutitos desde el verano y hasta la cosecha, favorece la producción por cuanto significa mantener el número de frutos existentes hasta este período y evitar la alta pérdida de reservas que lleva consigo esta caída. Si bien en este ensayo no se logró demostrar efecto alguno de las aplicaciones de boro al follaje, es de interés repetir el ensayo utilizando dosis más elevadas.

De acuerdo con los resultados obtenidos, puede señalarse que en los parámetros evaluados no fue posible determinar efecto alguno del boro sobre el número de flores abscisionadas, ni tampoco sobre el número ni el peso de frutitos caídos.

Al analizar estadísticamente el número de frutos por metro cúbico, no se encontró diferencias ni entre los tratamientos ni con el testigo, es decir, todos los tratamientos se comportaron de igual forma, como lo señala el Cuadro 1.

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>PROMEDIOS</th>
<th>IGUALDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 : Testigo</td>
<td>6,1</td>
<td>A</td>
</tr>
<tr>
<td>T10: 2,5 kg/ha. Acido Bórico</td>
<td>2,2</td>
<td>A</td>
</tr>
<tr>
<td>T11: 7,5 kg/ha. Acido Bórico</td>
<td>8,2</td>
<td>A</td>
</tr>
<tr>
<td>T12: 15,0 kg/ha. Acido Bórico</td>
<td>1,9</td>
<td>A</td>
</tr>
<tr>
<td>T13: 1,25 lt/ha. Boro Floable</td>
<td>5,0</td>
<td>A</td>
</tr>
<tr>
<td>T14: 2,50 lt/ha. Boro Floable</td>
<td>2,5</td>
<td>A</td>
</tr>
<tr>
<td>T15: 5,00 lt/ha. Boro Floable</td>
<td>5,9</td>
<td>A</td>
</tr>
</tbody>
</table>

Promedios con letras iguales, no difieren según Test de Tukey (P=0,05).
Pese a que los promedios son en algunos casos altamente distintos, éstos no pueden ser utilizados como referencia para suponer diferencias, puesto que la gran variabilidad interna de las muestras indican, al ser sometidas a análisis estadístico, que no existe tal diferencia.

Los kilógramos por metro cúbico al ser sometidos a análisis estadístico, no mostraron diferencias entre los tratamientos ni con el testigo, luego todos los tratamientos son iguales entre sí y con el testigo, como lo señala el Cuadro 2.

De acuerdo con los antecedentes antes señalados, las aplicaciones de boro al follaje, en ninguna dosis o producto, tuvieron efecto sobre los parámetros de evaluación de producción, es decir, número de frutos y kilógramos por metro cúbico.

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>PROMEDIOS</th>
<th>IGUALDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 : Testigo</td>
<td>0,91</td>
<td>A</td>
</tr>
<tr>
<td>T10: 2,5 kg/ha. Acido Bórico</td>
<td>0,42</td>
<td>A</td>
</tr>
<tr>
<td>T11: 7,5 kg/ha. Acido Bórico</td>
<td>1,34</td>
<td>A</td>
</tr>
<tr>
<td>T12: 15,0 kg/ha. Acido Bórico</td>
<td>0,30</td>
<td>A</td>
</tr>
<tr>
<td>T13: 1,25 lt/ha. Boro Floable</td>
<td>0,87</td>
<td>A</td>
</tr>
<tr>
<td>T14: 2,50 lt/ha. Boro Floable</td>
<td>0,48</td>
<td>A</td>
</tr>
<tr>
<td>T15: 5,00 lt/ha. Boro Floable</td>
<td>1,09</td>
<td>A</td>
</tr>
</tbody>
</table>

Promedios con letras iguales, no diferen según Test de Tukey (P=0,05).
Al respecto, ROBBERTSE, COETZER y BESSINGER (1991) señalan que la evaluación de productividad mostró, aunque no significativamente, que el mayor resultado se obtuvo en el tratamiento en el que las aplicaciones se realizaron a yemas florales a punto de abrir, el cual fue coincidente con los resultados de los análisis a las inflorescencias en el invierno anterior.

Además de las consideraciones hechas a partir de los antecedentes obtenidos de ROBBERTSE, COETZER y BESSINGER (1991), se debe tener presente que KÖHNE (1992)* señala que para realizar una evaluación de productividad en paltos, se requiere de al menos 15 árboles por tratamiento, de otra manera la alta variabilidad de los huertos sólo permitirá obtener resultados parciales en la mayoría de los casos.

Al realizar evaluaciones de productividad debe evitarse la interacción de elementos que puedan distorsionar o enmascarar los resultados. Para ello el observar los antecedentes del autor antes mencionado es de gran importancia. Por otra parte, se debe considerar que al realizar aplicaciones de elementos no determinantes del desarrollo, como lo señala WHILEY (1990a), no se puede esperar obtener diferencias claras si no se evalúan con alta precisión y rigurosidad.

4.2. **Ensayo aplicación al suelo:**

Al analizar estadísticamente el porcentaje de aceite obtenido de las paltas, no se encontró diferencias ni entre los tratamientos ni con el testigo, es decir, todos los tratamientos se comportan de igual forma, como lo señala el Cuadro 3.

Si bien no se verificaron diferencias en el contenido de aceite de acuerdo a los tratamientos, los resultados muestran que los árboles que se encontraban en baja producción presentaban un contenido de aceite más elevado que los árboles que estaban en un período de alta producción, como lo señala el Cuadro 4.

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>PROMEDIOS</th>
<th>IGUALDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 : Testigo</td>
<td>11,39</td>
<td>A</td>
</tr>
<tr>
<td>T1 : 60 kg/ha. Acido Bórico</td>
<td>10,26</td>
<td>A</td>
</tr>
<tr>
<td>T2 : 80 kg/ha. Acido Bórico</td>
<td>11,50</td>
<td>A</td>
</tr>
<tr>
<td>T3 : 100 kg/ha. Acido Bórico</td>
<td>10,63</td>
<td>A</td>
</tr>
<tr>
<td>T4 : 100 kg/ha. Bórxax</td>
<td>11,19</td>
<td>A</td>
</tr>
<tr>
<td>T5 : 135 kg/ha. Bórax</td>
<td>9,82</td>
<td>A</td>
</tr>
<tr>
<td>T6 : 168 kg/ha. Bórax</td>
<td>9,43</td>
<td>A</td>
</tr>
<tr>
<td>T7 : 10 lt/ha. Boro Floable</td>
<td>8,54</td>
<td>A</td>
</tr>
<tr>
<td>T8 : 20 lt/ha. Boro Floable</td>
<td>10,01</td>
<td>A</td>
</tr>
<tr>
<td>T9 : 30 lt/ha. Boro Floable</td>
<td>7,80</td>
<td>A</td>
</tr>
</tbody>
</table>

Promedios con letras iguales, no difieren según Test de Tukey (P=0,05).
De acuerdo a estos resultados, los árboles en baja producción pueden ser cosechados antes que los árboles en alta producción, puesto que el mayor contenido de aceite de los primeros permite cumplir antes con los porcentajes de aceite establecidos como índice de cosecha.

Al analizar estadísticamente el número de frutos por metro cúbico, no se encontró diferencias entre los tratamientos ni con el testigo, es decir, todos los tratamientos se comportaron de igual forma, como lo señala el Cuadro 5.

Al analizar los kilogramos de fruta por metro cúbico, no se encontró diferencias entre los tratamientos ni con el testigo, luego todos los tratamientos son iguales entre sí y con el testigo, como se puede apreciar en el Cuadro 6.

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>ALTA</th>
<th>BAJA</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 : Testigo</td>
<td>8,72</td>
<td>14,05</td>
</tr>
<tr>
<td>T1 : 60 kg/ha. Acido Bórico</td>
<td>8,77</td>
<td>13,25</td>
</tr>
<tr>
<td>T2 : 80 kg/ha. Acido Bórico</td>
<td>9,52</td>
<td>13,42</td>
</tr>
<tr>
<td>T3 : 100 kg/ha. Acido Bórico</td>
<td>9,41</td>
<td>11,86</td>
</tr>
<tr>
<td>T4 : 100 kg/ha. Bórax</td>
<td>10,30</td>
<td>12,09</td>
</tr>
<tr>
<td>T5 : 135 kg/ha. Bórax</td>
<td>8,37</td>
<td>11,27</td>
</tr>
<tr>
<td>T6 : 168 kg/ha. Bórax</td>
<td>8,57</td>
<td>10,28</td>
</tr>
<tr>
<td>T7 : 10 lt/ha. Boro Floable</td>
<td>7,13</td>
<td>9,95</td>
</tr>
<tr>
<td>T8 : 20 lt/ha. Boro Floable</td>
<td>9,07</td>
<td>11,89</td>
</tr>
<tr>
<td>T9 : 30 lt/ha. Boro Floable</td>
<td>8,08</td>
<td>10,01</td>
</tr>
</tbody>
</table>
Al ser sometidos a análisis estadístico los calibres, de acuerdo a los pesos de los futos individuales, no se encontró diferencias entre los tratamientos ni con el testigo, en los calibres 80 o más, 70, 60, 40 y 30 o menos, por lo tanto todos los tratamientos, con la excepción del calibre 50, son iguales entre sí y con el testigo, como lo señalan los Anexos 1, 2, 3, 4 y 5, respectivamente. Sólo el calibre 50 mostró diferencias como lo señala el Cuadro 7.

Al analizar estadísticamente los calibres de acuerdo a su diámetro ecuatorial en milímetros, sólo los calibres 70, 50 y 40 presentaron diferencias, como lo señalan los Anexos 6, 7 y 8, respectivamente. En tanto que los calibres 80 o más, 60 y 30 o menos, no presentaron diferencias, como lo señalan los Anexos 9, 10 y 11, respectivamente.

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>PROMEDIOS</th>
<th>IGUALDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 : Testigo</td>
<td>6.08</td>
<td>A</td>
</tr>
<tr>
<td>T1 : 60 kg/ha. Acido Bórico</td>
<td>6.79</td>
<td>A</td>
</tr>
<tr>
<td>T2 : 80 kg/ha. Acido Bórico</td>
<td>7.06</td>
<td>A</td>
</tr>
<tr>
<td>T3 : 100 kg/ha. Acido Bórico</td>
<td>6.54</td>
<td>A</td>
</tr>
<tr>
<td>T4 : 100 kg/ha. Bórax</td>
<td>8.11</td>
<td>A</td>
</tr>
<tr>
<td>T5 : 135 kg/ha. Bórax</td>
<td>4.66</td>
<td>A</td>
</tr>
<tr>
<td>T6 : 168 kg/ha. Bórax</td>
<td>3.01</td>
<td>A</td>
</tr>
<tr>
<td>T7 : 10 lt/ha. Boro Floable</td>
<td>7.54</td>
<td>A</td>
</tr>
<tr>
<td>T8 : 20 lt/ha. Boro Floable</td>
<td>4.71</td>
<td>A</td>
</tr>
<tr>
<td>T9 : 30 lt/ha. Boro Floable</td>
<td>7.80</td>
<td>A</td>
</tr>
</tbody>
</table>

Promedios con letras iguales, no difieren según Test de Tukey (P=0.05).

Al analizar estadísticamente los calibres de acuerdo a su diámetro polar en milímetros, sólo los calibres 80 o más y 70 presentaron diferencias, como lo señalan los Anexos 12 y 13 respectivamente. Los calibres 60, 50, 40 y 30 o menos, no presentaron diferencias como lo señalan los Cuadros 14, 15, 16 y 17, respectivamente.

La literatura no hace referencia a efectos del boro sobre la fruta en la misma temporada cuando las aplicaciones son realizadas al suelo. Numerosos autores señalan el efecto positivo de una adecuada reserva de boro al iniciar la floración, por cuanto favorece el desarrollo del tubo polínico. Así también el boro es
importante en el desarrollo temprano de la fruta, según WHILEY (1990b).

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>PROMEDIOS</th>
<th>IGUALDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 : Testigo</td>
<td>0.91</td>
<td>A</td>
</tr>
<tr>
<td>T1 : 60 kg/ha. Acido Bórico</td>
<td>0.98</td>
<td>A</td>
</tr>
<tr>
<td>T2 : 80 kg/ha. Acido Bórico</td>
<td>1.07</td>
<td>A</td>
</tr>
<tr>
<td>T3 : 100 kg/ha. Acido Bórico</td>
<td>1.09</td>
<td>A</td>
</tr>
<tr>
<td>T4 : 100 kg/ha. Bórax</td>
<td>1.28</td>
<td>A</td>
</tr>
<tr>
<td>T5 : 135 kg/ha. Bórax</td>
<td>0.79</td>
<td>A</td>
</tr>
<tr>
<td>T6 : 168 kg/ha. Bórax</td>
<td>0.60</td>
<td>A</td>
</tr>
<tr>
<td>T7 : 10 lt/ha. Boro Floable</td>
<td>1.12</td>
<td>A</td>
</tr>
<tr>
<td>T8 : 20 lt/ha. Boro Floable</td>
<td>0.73</td>
<td>A</td>
</tr>
<tr>
<td>T9 : 30 lt/ha. Boro Floable</td>
<td>1.04</td>
<td>A</td>
</tr>
</tbody>
</table>

Promedios con letras iguales, no difieren según Test de Tukey (P=0,05).

Considerando estos antecedentes debe señalarse que las aplicaciones de boro fueron realizadas a inicios y mediados del verano, por lo cual éstas no debieran afectar el desarrollo de la fruta, aún menos en la misma temporada, puesto que en dichas aplicaciones el efecto sería de esperar que se manifestara en la floración y desarrollo temprano de la fruta, en la temporada siguiente.

WHILEY (1990a) señala que el boro es uno de los tres microelementos que tienen mayor influencia sobre la calidad de la fruta, si es que éste se encuentra deficiente. Por otra parte,
señala al boro como un elemento no regulador del crecimiento, por cuanto la planta permite un gran rango de variación de la concentración en que éste es requerido.

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>PROMEDIOS</th>
<th>IGUALDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 : Testigo</td>
<td>225,90</td>
<td>A</td>
</tr>
<tr>
<td>T1 : 60 kg/ha. Acido Bórico</td>
<td>233,16</td>
<td>A B</td>
</tr>
<tr>
<td>T2 : 80 kg/ha. Acido Bórico</td>
<td>228,17</td>
<td>A B C</td>
</tr>
<tr>
<td>T3 : 100 kg/ha. Acido Bórico</td>
<td>235,91</td>
<td>B</td>
</tr>
<tr>
<td>T4 : 100 kg/ha. Bórax</td>
<td>226,67</td>
<td>A B C</td>
</tr>
<tr>
<td>T5 : 135 kg/ha. Bórax</td>
<td>228,33</td>
<td>A B</td>
</tr>
<tr>
<td>T6 : 168 kg/ha. Bórax</td>
<td>230,19</td>
<td>A B</td>
</tr>
<tr>
<td>T7 : 10 lit/ha. Boro Floable</td>
<td>228,64</td>
<td>A B</td>
</tr>
<tr>
<td>T8 : 20 lit/ha. Boro Floable</td>
<td>233,75</td>
<td>B</td>
</tr>
<tr>
<td>T9 : 30 lit/ha. Boro Floable</td>
<td>216,43</td>
<td>C</td>
</tr>
</tbody>
</table>

Promedios con letras iguales, no diferen según Test de Tukey (P=0,05).

Basado en ésto podría suponerse que de existir realmente diferencias estadísticas, éstas se deberían al efecto sobre la forma de los frutos deficientes versus los frutos ahora menos o no deficientes.

Los resultados obtenidos, si se analizan por si solos, pueden indicar mejores resultados en algunos productos y dosis. Sin
embargo, si se contrastan con los resultados de los análisis de tejido foliar, se observa una clara incongruencia, que debería llevar a pensar que algún parámetro de evaluación distorsiona los resultados; probablemente por desconocimiento de la forma de interpretarlo.

De acuerdo a lo antes señalado por KÖHNE (1992)*, la poca claridad de estos resultados puede explicarse como el producto de una muestra insuficiente. Es por ello que las diferencias estadísticas encontradas no llevan un patrón claro de comportamiento. Si bien los resultados no pueden ser desestimados, su interpretación debe ser exhaustiva y cuidadosa.

Por otra parte, WHILEY (1990b) señala que al analizar los rangos críticos establecidos para paltos por EMBLETON y JONES (1964), muestra de hecho que el rango para los nutrientes no reguladores es de 100-400% de la concentración base donde el crecimiento se niveló. Por lo tanto, dado que las concentraciones de nutrientes no reguladores se ajustan dentro de ese amplio margen, exigen muy pocas expectativas de un impacto, tanto en el crecimiento como en el rendimiento.

Otro elemento que participa en la claridad de los resultados o en la falta de ellos es que el huerto utilizado, al igual que todos los huertos chilenos, tiene sus árboles con patrones de semilla de Mexicoloca lo que le confiere una variabilidad altamente significativa.

Sin lugar a dudas los resultados más concluyentes se deberían encontrar en la cosecha de la primavera de 1993, puesto que esa

bórax fueron equivalentes a las del ácido bórico en las concentraciones de boro aplicadas. De acuerdo con esto se puede decir que el ácido bórico en las concentraciones de 14,0 y 17,5 kg de boro por hectárea, permitió obtener los mejores contenidos foliares de boro.

La concentración de boro en el tratamiento 2 (14,0 kg de boro por hectárea) fue de 98,5 ppm y en el tratamiento 3 (17,5 kg de boro por hectárea) fue de 83,5 ppm, lo que hace suponer que a lo menos con la primera de ellas los resultados de cuaja en la temporada siguiente debieran ser óptimos, de acuerdo a la responsabilidad que le compete al boro en ella, por cuanto ROBBERTSE y COETZER (1988) señalan que el óptimo crecimiento del tubo polínico en paltos ocurre cuando la concentración de este microelemento en las flores está cerca de 100 mg/kg. En tanto, WHILEY (1990b) señala que el contenido de boro en las flores sería de aproximadamente 25 mg/kg, concentración más baja que cualquiera de las concentraciones obtenidas en este ensayo.

LABANNAKAS et al. (1961) señalan la importancia de la competencia entre el boro y el nitrógeno. ROBBERTSE, COETZER y BESSINGER (1991) señalan que tanto el contenido de boro en las hojas como en la fruta puede presentar diferencias entre temporadas, lo que se explicaría en parte por el hecho que los altos contenidos de nitrógeno en una temporada pueden hacer disminuir el contenido de boro en la misma y por ende, los niveles foliares y productivos.

Las dosis deben ser nuevamente probadas por otras investigaciones, para establecer la mejor y determinar que los resultados obtenidos en esta investigación no estén influídos por la competencia entre el boro y el nitrógeno.
Esto hace pensar en que debieran estudiarse la fertilizaciones nitrogenadas elevadas que se han realizado en las últimas temporadas en los huertos de paltos de nuestro país, las cuales han superado las 250 unidades de nitrógeno en algunos huertos, manteniéndose los niveles foliares de nitrógeno en rangos normales, si se desea conocer y en el caso evitar, la competencia descrita.

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>PROMEDIOS</th>
<th>IGUALDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 : Testigo</td>
<td>46,5</td>
<td>A</td>
</tr>
<tr>
<td>T1 : 60 kg/ha. Acido Bórico</td>
<td>71,0</td>
<td>B</td>
</tr>
<tr>
<td>T2 : 80 kg/ha. Acido Bórico</td>
<td>98,5</td>
<td>C</td>
</tr>
<tr>
<td>T3 : 100 kg/ha. Acido Bórico</td>
<td>83,5</td>
<td>C</td>
</tr>
<tr>
<td>T4 : 100 kg/ha. Bórax</td>
<td>42,0</td>
<td>A</td>
</tr>
<tr>
<td>T5 : 135 kg/ha. Bórax</td>
<td>32,3</td>
<td>A</td>
</tr>
<tr>
<td>T6 : 168 kg/ha. Bórax</td>
<td>43,0</td>
<td>A</td>
</tr>
<tr>
<td>T7 : 10 lt/ha. Boro Floable</td>
<td>35,3</td>
<td>A</td>
</tr>
<tr>
<td>T8 : 20 lt/ha. Boro Floable</td>
<td>44,3</td>
<td>A</td>
</tr>
<tr>
<td>T9 : 30 lt/ha. Boro Floable</td>
<td>38,8</td>
<td>A</td>
</tr>
</tbody>
</table>

Promedios con letras iguales, no difieren según Test de Tukey (P=0.05).

Los resultados de los análisis de tejido foliar se encuentran en los Anexos 18 a 24, ordenados de acuerdo a la fecha de realización.
Todos los resultados que a continuación se discutirán no fueron sometidos a análisis estadístico.

El Anexo 18 muestra las concentraciones foliares de boro al momento de comenzar el ensayo (muestreado el 21 de octubre de 1991), previo a cualquier aplicación. En éste puede verse que el contenido de boro al momento en que la floración se encontraba en un 35% aproximadamente, corresponde a 17 ppm.

El Anexo 19 muestra los contenidos foliares de boro (muestreados el 11 de noviembre de 1991), tres semanas después de realizadas las aspersiones de boro al follaje. Puede verse que los contenidos de boro no se incrementaron significativamente respecto del testigo. En el mejor de los casos aumentó en 6 ppm, el que corresponde al tratamiento 15 (boro floable 5,0 lt/ha.), lo cual no respresenta un incremento sustancial respecto del testigo. Sin embargo, las dosis aplicadas pueden haber sido bajas de acuerdo a los antecedentes obtenidos de los representantes de los productos. A pesar de ello el mayor promedio como producto se obtiene con el boro floable.

ROBBERTSE, COETZER y BESSINGER (1991) señalan que al realizar aspersiones al follaje con Solubor a yemas florales a punto de abrir los contenidos foliares de boro no se incrementaron. Para el análisis de tejido foliar utilizaron hojas del flash previo de verano al igual que en este ensayo.

Estos autores señalan que al muestrear a fines de primavera hojas del mismo flash, los contenidos de boro eran altos, afectados por las aplicaciones a yemas florales a punto de abrir y luego en la antesis de las primeras flores de la panícula. Sin embargo, al año siguiente los mejores resultados los obtuvieron sólo con las aspersiones a las primeras flores de la panícula. El Anexo 19 muestra que los resultados de los autores antes señalados no se
presentaron en este ensayo, o al menos de forma no tan evidente, puesto que a pesar de que se observó una leve alza en el contenido de boro foliar, ésta no fue lo suficientemente concluyente.

Es de interés el probar la metodología empleada por estos autores, ya que señalan que los mejores resultados de productividad los obtuvieron con las aplicaciones a yemas a punto de abrir, las que llegaron a aproximadamente 135 kg/ha. de fruta, y que los mejores resultados de cuaja los obtuvieron con las aplicaciones conjuntas a yemas a punto de abrir y posteriormente en la antesis de las primeras flores de la panícula, en las cuales los contenidos de foliares de boro llegaron a aproximadamente 50 ppm.

En el Anexo 20 se puede observar los resultados de los análisis de tejido foliar del ensayo al follaje, realizados el 18 de marzo de 1992, para el cual se utilizaron hojas maduras del flash de primavera. En éste no se observan diferencias entre los tratamientos y el testigo, lo cual es de esperar puesto que al momento de realizar las aplicaciones muchas de las hojas muestreadas no se habían desarrollado aún. De haberlo hecho estaban compitiendo con la floración, la que es mucho más extractiva de boro que las hojas en desarrollo, según lo señalado por WHILEY (1990a). Por lo tanto, los efectos de esa aplicación en cuanto a reservas como boro foliar, debieran ser muy pobres, si es que las hubiera, debido a que en presencia de un sink tan fuerte como lo es la floración el boro se moviliza rápidamente.

En el Anexo 21 se puede observar los resultados de los análisis de tejido foliar del ensayo al suelo, muestreados el 18 de marzo de 1992, para el cual se utilizaron hojas maduras del flash de primavera. Los tratamientos 7, 8 y 9 (boro floable), en promedio, no difieren del testigo; sin embargo, el tratamiento 9
(4,5 kg de boro por hectárea) parece presentar alguna diferencia, la cual no se encuentra dentro de lo esperado puesto que la cantidad de boro suministrado en este tratamiento es cuatro veces menor que la de los tratamientos 3 y 6 (ambos conteniendo 17,5 kg de boro por hectárea). Por otra parte, no coincide con los resultados que se discutirán más adelante.

En los tratamientos de los productos ácido bórico y bórax se puede apreciar cierta diferencia con el testigo, sin embargo, no se observa una relación entre la concentración de la dosis empleada y las concentraciones foliares obtenidas. Pero al realizar promedios de los tratamientos por productos, se puede observar una mayor tendencia al alza con el ácido bórico que con el bórax, presentándose 20 ppm más alto que el testigo.

Con el fin de aclarar esta falta de relación entre dosis aplicada y concentración obtenida, se procedió a muestrear nuevamente (14 de abril de 1992) de acuerdo a las categorías de producción alta o baja, seleccionando hojas maduras del flash de primavera.

El Anexo 22 muestra que las aspersiones al follaje realizadas en la primavera anterior no presentan diferencias entre sí ni con el testigo, respecto de el contenido foliar de boro, lo que ya fue señalado al analizar el Anexo 19. En tanto no se apreció relación alguna entre las dosis empleadas y el estado productivo de los árboles.

En el Anexo 23 presenta las aplicaciones al suelo, en las que se aprecia una pequeña diferencia con respecto al testigo, en relación al contenido foliar de boro, el cual sólo se puede considerar en términos descriptivos. Nuevamente no fue posible observar una relación entre dosis aplicada y concentración obtenida.
Los antecedentes obtenidos de la literatura no hacen referencia sobre el estado productivo de los árboles (alto o bajo) y la concentración foliar de boro. Nuevamente se debe señalar que el control de los elementos estadísticamente representativos debe ser de la mayor intensidad posible, siendo esto difícil de practicar en ensayos de campo. Es así como no es posible evitar la variabilidad que le confieren a los resultados elementos como un patrón de semilla, un suelo de perfil irregular, contenidos foliares de nitrógeno elevados, etc.

El Anexo 24 muestra las concentraciones de microelementos resultantes de los análisis foliares realizados el 23 de Junio de 1992, a los tratamientos aplicados al suelo. En esta oportunidad se trató de determinar el contenido de boro en hojas de ramillas determinadas e indeterminadas provenientes del flash de primavera y de verano, y de acuerdo a la categoría de producción alta o baja. Los resultados indican que no existen diferencias aparentes entre las hojas del flash de primavera independientemente de si la ramilla de la cual procedía haya tenido o no crecimiento en el flash de verano y si corresponde a una u otra categoría de producción.

Al comparar las hojas de los dos flash de crecimiento se observa claramente que las hojas del flash de verano tienen concentraciones de boro significativamente más altas que las hojas del flash de primavera. Esto fue evidente en los tratamientos con ácido bórico y bórax y menos claro con el boro floable.

Estos resultados se deben a que la primera aplicación al suelo se realizó en diciembre, período en el cual el flash vegetativo de primavera había cesado casi en su totalidad. Esta es la razón por la que la reserva de boro en las hojas fue pobre, ya que a partir
de este momento el crecimiento radicular de verano es un fuerte competidor por boro, según WHILEY (1990a).

En tanto, la segunda aplicación aunque de menor proporción, se realizó en febrero, época en la cual comienza el flash vegetativo de verano. Así WHILEY (1990d) señala que las hojas en formación son un sink de nutrientes. Además debe considerarse que las hojas de este flash tuvieron mayor disponibilidad de boro a lo largo de su desarrollo, de tal forma que los contenidos del microelemento en éstas fue efectivamente más alto.

De acuerdo a estos resultados y a los antecedentes obtenidos en la literatura, es conveniente suministrar boro periódicamente a la planta, de tal forma que la reserva en las hojas sea abundante y uniforme independiente de cual sea el flash que la originó. Ello debido a que las inflorescencias se pueden desarrollar a partir de ramillas que se originaron indistintamente en uno u otro flash, mientras no se confirme la teoría que señala que al menos en Chile la mayor parte de la floración cuaja sobre ramillas desarrolladas en el flash de primavera.

Debido a que el boro es medianamente fácil de lixiviar, es conveniente aplicarlo en forma parcelada y periódica a lo largo de los flash de crecimiento, recordando que deben existir temperaturas mínimas para que se realice la absorción. Las bajas temperaturas invernales en el suelo impiden la absorción, además de corresponder a un período en el que la falta de riego daña severamente las raíces, según WHILEY (1990a). Es por esto que los hojas al llegar el invierno deben poseer ya una adecuada cantidad de boro, puesto que al iniciarse la primavera y con ella la floración, actuarán como abastecedoras, cuando las temperaturas sean aún demasiado bajas como para una absorción adecuada.
A fin de evitar la competencia entre el boro y el nitrógeno, debe aprovecharse las épocas libres de fertilizaciones nitrogenadas durante los flash de crecimiento para realizar las aplicaciones de boro.

Por otra parte, al comparar los Anexos 18 a 23 se puede observar que se cumple lo señalado por WHILEY (1990a) en el sentido de que los contenidos de boro son altos en las hojas en el verano y que luego tienden a disminuir hacia

Si bien existen antecedentes de competencia entre el boro y otros elementos, en este ensayo no hay resultados que puedan ratificarlos.
5. CONCLUSIONES.

No se estableció efecto estadísticamente significativo al 5%, de las aplicaciones de boro al follaje en ninguno de los tratamientos sobre el número de kilogramos totales y el número de frutos finales.

Tampoco se estableció efecto sobre los contenidos de los análisis de tejido foliar y la intensidad de caída de flores y frutitos.

No se determinó un efecto estadísticamente significativo al 5%, de las aplicaciones de boro al suelo sobre el número de kilogramos totales y el número de frutos finales.

Se estableció diferencias estadísticas al 5% de significancia, en los tratamientos al suelo sobre la concentración de boro en el tejido floral. Los mejores resultados se obtuvieron con los tratamientos de ácido bórico en las dosis de 80 y 100 kg/ha.

No se determinó diferencias estadísticas al 5% de significancia, en los tratamientos al suelo sobre los contenidos de aceite en la fruta.

Sí hubo diferencias en los contenidos de aceite de los frutos provenientes de árboles con alta y baja carga, siendo éstos notablemente más altos en los árboles que se encontraban con baja producción.

No se observó diferencias en los contenidos foliares de boro, muestreados en hojas del flash de primavera, entre los árboles de alta y baja producción independientemente de los tratamientos.

Al analizar los contenidos de boro en las hojas de los flash de primavera y verano de los tratamientos al suelo, se visualizó que
éste fue claramente más alto en las hojas del segundo flash, probablemente como consecuencia de la época de aplicación.

Los análisis foliares demuestran un comportamiento cíclico del contenido de boro foliar a lo largo del año, confirmando lo descrito anteriormente por otros investigadores.
6. **RESUMEN.**

Se realizó un ensayo de aplicaciones de boro al follaje y al suelo en palto (*Persea americana* Mill.) cv. Hass en la provincia de Quillota, V región. Las aplicaciones al follaje consistieron en la aspersión de dos productos (ácido bórico y boro floable) en tres dosis cada uno, y se efectuaron en primavera con un 50% de flor. Las aplicaciones al suelo contemplaron tres productos (ácido bórico, bórax y boro floable) en tres dosis y en dos parcialidades cada uno; la primera se realizó al término del flash vegetativo de primavera y la segunda a inicios del flash vegetativo de verano.

Se analizó el efecto de las aplicaciones sobre la intensidad de flores y frutitos caídos, el número de kilogramos totales y el número de frutos finales, sin que se encontraran diferencias estadísticas al 5% de significancia entre los tratamientos. Tampoco se observó efecto de los tratamientos al follaje sobre el contenido de boro de los análisis de tejido foliar; los tratamientos al suelo con ácido bórico sugieren una tendencia a un mayor contenido de boro foliar. Los tratamientos con ácido bórico aplicado al suelo, en las dosis media y alta, presentaron contenidos de boro estadísticamente superiores en el tejido floral.

La carga frutal no afectó el contenido de boro en las hojas; sin embargo, se determinó un mayor contenido de aceite en los frutos provenientes de árboles en baja producción.
7. LITERATURA CITADA

BEKEY, R. 1989. To bee or not to be; pollination of avocados. California Grower, 13 (2): 30-32.

Universidad Católica de Valparaíso, Facultad de Agronomía. 127 p.

1990a. Curso Internacional de Producción, Postcosecha y Comercialización de Paltas, 2-5 Octubre de 1990, Viña del Mar, Chile. Cassette Nº 5; 30 min.
1990b. Nutrición una herramienta estratégica para lograr una alta productividad y calidad en el cultivo del palto. Curso Internacional de Producción, Postcosecha y Comercialización de Paltas, 2-5 Octubre de 1990, Viña del Mar, Chile. UCV, Agronomía.

1990d. Interpretacion de la fenología y fisiología de palto para obtener mayores producciones. Curso Internacional de Producción, Postcosecha y Comercialización de Paltas, 2-5 Octubre de 1990, Viña del Mar, Chile. UCV, Agronomía.

ANEXOS
ANEXO 1. Peso de los frutos del calibre 80 o más, en gramos, tratamientos al suelo, palto cv. Hass, Quillota, V Región.

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>PROMEDIOS</th>
<th>IGUALDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 : Testigo</td>
<td>125,38</td>
<td>A</td>
</tr>
<tr>
<td>T1 : 60 kg/ha. Acido Bórico</td>
<td>130,00</td>
<td>A</td>
</tr>
<tr>
<td>T2 : 80 kg/ha. Acido Bórico</td>
<td>127,30</td>
<td>A</td>
</tr>
<tr>
<td>T3 : 100 kg/ha. Acido Bórico</td>
<td>121,38</td>
<td>A</td>
</tr>
<tr>
<td>T4 : 100 kg/ha. Bórax</td>
<td>120,80</td>
<td>A</td>
</tr>
<tr>
<td>T5 : 135 kg/ha. Bórax</td>
<td>129,42</td>
<td>A</td>
</tr>
<tr>
<td>T6 : 168 kg/ha. Bórax</td>
<td>125,00</td>
<td>A</td>
</tr>
<tr>
<td>T7 : 10 lt/ha. Boro Floable</td>
<td>131,14</td>
<td>A</td>
</tr>
<tr>
<td>T8 : 20 lt/ha. Boro Floable</td>
<td>120,56</td>
<td>A</td>
</tr>
<tr>
<td>T9 : 30 lt/ha. Boro Floable</td>
<td>122,86</td>
<td>A</td>
</tr>
</tbody>
</table>

Promedios con letras iguales, no difieren según Test de Tuckey (P=0.05).
ANEXO 2. Peso de los frutos del calibre 70, en gramos, tratamientos al suelo, palto cv. Hass, Quillota, V Región.

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>PROMEDIOS</th>
<th>IGUALDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 : Testigo</td>
<td>164,12</td>
<td>A</td>
</tr>
<tr>
<td>T1 : 60 kg/ha. Acido Bórico</td>
<td>164,29</td>
<td>A</td>
</tr>
<tr>
<td>T2 : 80 kg/ha. Acido Bórico</td>
<td>163,33</td>
<td>A</td>
</tr>
<tr>
<td>T3 : 100 kg/ha. Acido Bórico</td>
<td>164,74</td>
<td>A</td>
</tr>
<tr>
<td>T4 : 100 kg/ha. Bórax</td>
<td>165,00</td>
<td>A</td>
</tr>
<tr>
<td>T5 : 135 kg/ha. Bórax</td>
<td>166,67</td>
<td>A</td>
</tr>
<tr>
<td>T6 : 168 kg/ha. Bórax</td>
<td>167,50</td>
<td>A</td>
</tr>
<tr>
<td>T7 : 10 lt/ha. Boro Floable</td>
<td>164,55</td>
<td>A</td>
</tr>
<tr>
<td>T8 : 20 lt/ha. Boro Floable</td>
<td>167,14</td>
<td>A</td>
</tr>
<tr>
<td>T9 : 30 lt/ha. Boro Floable</td>
<td>166,15</td>
<td>A</td>
</tr>
</tbody>
</table>

Promedios con letras iguales, no difieren según Test de Tuckey (P=0,05).

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>PROMEDIOS</th>
<th>IGUALDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 : Testigo</td>
<td>191,67</td>
<td>A</td>
</tr>
<tr>
<td>T1 : 60 kg/ha. Acido Bórico</td>
<td>192,22</td>
<td>A</td>
</tr>
<tr>
<td>T2 : 80 kg/ha. Acido Bórico</td>
<td>192,67</td>
<td>A</td>
</tr>
<tr>
<td>T3 : 100 kg/ha. Acido Bórico</td>
<td>193,33</td>
<td>A</td>
</tr>
<tr>
<td>T4 : 100 kg/ha. Bórax</td>
<td>194,55</td>
<td>A</td>
</tr>
<tr>
<td>T5 : 135 kg/ha. Bórax</td>
<td>190,17</td>
<td>A</td>
</tr>
<tr>
<td>T6 : 168 kg/ha. Bórax</td>
<td>194,17</td>
<td>A</td>
</tr>
<tr>
<td>T7 : 10 lt/ha. Boro Floable</td>
<td>194,20</td>
<td>A</td>
</tr>
<tr>
<td>T8 : 20 lt/ha. Boro Floable</td>
<td>191,54</td>
<td>A</td>
</tr>
<tr>
<td>T9 : 30 lt/ha. Boro Floable</td>
<td>189,23</td>
<td>A</td>
</tr>
</tbody>
</table>

Promedios con letras iguales, no difieren según Test de Tuckey (P=0.05).

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>PROMEDIOS</th>
<th>IGUALDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 : Testigo</td>
<td>164,12</td>
<td>A</td>
</tr>
<tr>
<td>T1 : 60 kg/ha. Acido Bórico</td>
<td>164,29</td>
<td>A</td>
</tr>
<tr>
<td>T2 : 80 kg/ha. Acido Bórico</td>
<td>163,33</td>
<td>A</td>
</tr>
<tr>
<td>T3 : 100 kg/ha. Acido Bórico</td>
<td>164,74</td>
<td>A</td>
</tr>
<tr>
<td>T4 : 100 kg/ha. Bórax</td>
<td>165,00</td>
<td>A</td>
</tr>
<tr>
<td>T5 : 135 kg/ha. Bórax</td>
<td>166,67</td>
<td>A</td>
</tr>
<tr>
<td>T6 : 168 kg/ha. Bórax</td>
<td>167,50</td>
<td>A</td>
</tr>
<tr>
<td>T7 : 10 lt/ha. Boro Floable</td>
<td>164,55</td>
<td>A</td>
</tr>
<tr>
<td>T8 : 20 lt/ha. Boro Floable</td>
<td>167,14</td>
<td>A</td>
</tr>
<tr>
<td>T9 : 30 lt/ha. Boro Floable</td>
<td>166,15</td>
<td>A</td>
</tr>
</tbody>
</table>

Promedios con letras iguales, no difieren según Test de Tuckey (P=0,05).
ANEXO 5. Peso de los frutos del calibre 30 o menos, en gramos, tratamientos al suelo, palto cv. Hass, Quillota, V Región.

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>PROMEDIOS</th>
<th>IGUALDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 : Testigo</td>
<td>164,12</td>
<td>A</td>
</tr>
<tr>
<td>T1 : 60 kg/ha. Acido Bórico</td>
<td>164,29</td>
<td>A</td>
</tr>
<tr>
<td>T2 : 80 kg/ha. Acido Bórico</td>
<td>163,33</td>
<td>A</td>
</tr>
<tr>
<td>T3 : 100 kg/ha. Acido Bórico</td>
<td>164,74</td>
<td>A</td>
</tr>
<tr>
<td>T4 : 100 kg/ha. Bórax</td>
<td>165,00</td>
<td>A</td>
</tr>
<tr>
<td>T5 : 135 kg/ha. Bórax</td>
<td>166,67</td>
<td>A</td>
</tr>
<tr>
<td>T6 : 168 kg/ha. Bórax</td>
<td>167,50</td>
<td>A</td>
</tr>
<tr>
<td>T7 : 10 lt/ha. Boro Floable</td>
<td>164,55</td>
<td>A</td>
</tr>
<tr>
<td>T8 : 20 lt/ha. Boro Floable</td>
<td>167,14</td>
<td>A</td>
</tr>
<tr>
<td>T9 : 30 lt/ha. Boro Floable</td>
<td>166,15</td>
<td>A</td>
</tr>
</tbody>
</table>

Promedios con letras iguales, no diferencian según Test de Tuckey (P=0,05).

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>PROMEDIOS</th>
<th>IGUALDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 : Testigo</td>
<td>60,00</td>
<td>A</td>
</tr>
<tr>
<td>T1 : 60 kg/ha. Acido Bórico</td>
<td>58,71</td>
<td>A B</td>
</tr>
<tr>
<td>T2 : 80 kg/ha. Acido Bórico</td>
<td>59,67</td>
<td>A B</td>
</tr>
<tr>
<td>T3 : 100 kg/ha. Acido Bórico</td>
<td>58,89</td>
<td>A B</td>
</tr>
<tr>
<td>T4 : 100 kg/ha. Bórax</td>
<td>59,25</td>
<td>A B</td>
</tr>
<tr>
<td>T5 : 135 kg/ha. Bórax</td>
<td>61,75</td>
<td>A</td>
</tr>
<tr>
<td>T6 : 168 kg/ha. Bórax</td>
<td>59,42</td>
<td>A B</td>
</tr>
<tr>
<td>T7 : 10 lt/ha. Boro Floable</td>
<td>58,18</td>
<td>B</td>
</tr>
<tr>
<td>T8 : 20 lt/ha. Boro Floable</td>
<td>60,43</td>
<td>A</td>
</tr>
<tr>
<td>T9 : 30 lt/ha. Boro Floable</td>
<td>59,38</td>
<td>A B</td>
</tr>
</tbody>
</table>

Promedios con letras iguales, no difieren según Test de Tuckey (P=0,05).

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>PROMEDIOS</th>
<th>IGUALDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0: Testigo</td>
<td>65,46</td>
<td>A</td>
</tr>
<tr>
<td>T1: 60 kg/ha. Acido Bórico</td>
<td>66,63</td>
<td>A</td>
</tr>
<tr>
<td>T2: 80 kg/ha. Acido Bórico</td>
<td>65,75</td>
<td>A</td>
</tr>
<tr>
<td>T3: 100 kg/ha. Acido Bórico</td>
<td>65,73</td>
<td>A</td>
</tr>
<tr>
<td>T4: 100 kg/ha. Bórax</td>
<td>64,40</td>
<td>B</td>
</tr>
<tr>
<td>T5: 135 kg/ha. Bórax</td>
<td>63,30</td>
<td>A C</td>
</tr>
<tr>
<td>T6: 168 kg/ha. Bórax</td>
<td>66,77</td>
<td>C D</td>
</tr>
<tr>
<td>T7: 10 lt/ha. Boro Floable</td>
<td>65,32</td>
<td>A B</td>
</tr>
<tr>
<td>T8: 20 lt/ha. Boro Floable</td>
<td>65,56</td>
<td>A B D</td>
</tr>
<tr>
<td>T9: 30 lt/ha. Boro Floable</td>
<td>64,57</td>
<td>A B</td>
</tr>
</tbody>
</table>

Promedios con letras iguales, no difieren según Test de Tuckey (P=0,05).

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>PROMEDIOS</th>
<th>IGUALDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 : Testigo</td>
<td>70,00</td>
<td>A</td>
</tr>
<tr>
<td>T1 : 60 kg/ha. Acido Bórico</td>
<td>68,91</td>
<td>A</td>
</tr>
<tr>
<td>T2 : 80 kg/ha. Acido Bórico</td>
<td>68,71</td>
<td>A</td>
</tr>
<tr>
<td>T3 : 100 kg/ha. Acido Bórico</td>
<td>68,31</td>
<td>A</td>
</tr>
<tr>
<td>T4 : 100 kg/ha. Bórax</td>
<td>68,75</td>
<td>A</td>
</tr>
<tr>
<td>T5 : 135 kg/ha. Bórax</td>
<td>70,10</td>
<td>A</td>
</tr>
<tr>
<td>T6 : 168 kg/ha. Bórax</td>
<td>70,18</td>
<td>A</td>
</tr>
<tr>
<td>T7 : 10 lt/ha. Boro Floable</td>
<td>69,36</td>
<td>A, B</td>
</tr>
<tr>
<td>T8 : 20 lt/ha. Boro Floable</td>
<td>67,19</td>
<td>B, C</td>
</tr>
<tr>
<td>T9 : 30 lt/ha. Boro Floable</td>
<td>68,50</td>
<td>A, C</td>
</tr>
</tbody>
</table>

Promedios con letras iguales, no difieren según Test de Tuckey (P=0,05).

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>PROMEDIOS</th>
<th>IGUALDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 : Testigo</td>
<td>54,90</td>
<td>A</td>
</tr>
<tr>
<td>T1 : 60 kg/ha.</td>
<td>54,58</td>
<td>A</td>
</tr>
<tr>
<td>T2 : 80 kg/ha.</td>
<td>55,16</td>
<td>A</td>
</tr>
<tr>
<td>T3 : 100 kg/ha.</td>
<td>53,45</td>
<td>A</td>
</tr>
<tr>
<td>T4 : 100 kg/ha.</td>
<td>52,84</td>
<td>A</td>
</tr>
<tr>
<td>T5 : 135 kg/ha.</td>
<td>55,58</td>
<td>A</td>
</tr>
<tr>
<td>T6 : 168 kg/ha.</td>
<td>55,56</td>
<td>A</td>
</tr>
<tr>
<td>T7 : 10 lt/ha.</td>
<td>54,17</td>
<td>A</td>
</tr>
<tr>
<td>T8 : 20 lt/ha.</td>
<td>52,50</td>
<td>A</td>
</tr>
<tr>
<td>T9 : 30 lt/ha.</td>
<td>53,14</td>
<td>A</td>
</tr>
</tbody>
</table>

Promedios con letras iguales, no difieren según Test de Tuckey (P=0,05).

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>PROMEDIOS</th>
<th>IGUALDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 : Testigo</td>
<td>62,17</td>
<td>A</td>
</tr>
<tr>
<td>T1 : 60 kg/ha. Acido Bórico</td>
<td>62,89</td>
<td>A</td>
</tr>
<tr>
<td>T2 : 80 kg/ha. Acido Bórico</td>
<td>62,90</td>
<td>A</td>
</tr>
<tr>
<td>T3 : 100 kg/ha. Acido Bórico</td>
<td>62,80</td>
<td>A</td>
</tr>
<tr>
<td>T4 : 100 kg/ha. Bórax</td>
<td>61,73</td>
<td>A</td>
</tr>
<tr>
<td>T5 : 135 kg/ha. Bórax</td>
<td>62,24</td>
<td>A</td>
</tr>
<tr>
<td>T6 : 168 kg/ha. Bórax</td>
<td>62,92</td>
<td>A</td>
</tr>
<tr>
<td>T7 : 10 lt/ha. Boro Floable</td>
<td>60,96</td>
<td>A</td>
</tr>
<tr>
<td>T8 : 20 lt/ha. Boro Floable</td>
<td>61,15</td>
<td>A</td>
</tr>
<tr>
<td>T9 : 30 lt/ha. Boro Floable</td>
<td>60,85</td>
<td>A</td>
</tr>
</tbody>
</table>

Promedios con letras iguales, no difieren según Test de Tuckey (P=0,05).

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>PROMEDIOS</th>
<th>IGUALDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0: Testigo</td>
<td>74,00</td>
<td>A</td>
</tr>
<tr>
<td>T1: 60 kg/ha. Acido Bórico</td>
<td>73,75</td>
<td>A</td>
</tr>
<tr>
<td>T2: 80 kg/ha. Acido Bórico</td>
<td>72,67</td>
<td>A</td>
</tr>
<tr>
<td>T3: 100 kg/ha. Acido Bórico</td>
<td>71,62</td>
<td>A</td>
</tr>
<tr>
<td>T4: 100 kg/ha. Bórax</td>
<td>76,43</td>
<td>A</td>
</tr>
<tr>
<td>T5: 135 kg/ha. Bórax</td>
<td>71,67</td>
<td>A</td>
</tr>
<tr>
<td>T6: 168 kg/ha. Bórax</td>
<td>71,80</td>
<td>A</td>
</tr>
<tr>
<td>T7: 10 lt/ha. Boro Floable</td>
<td>73,50</td>
<td>A</td>
</tr>
<tr>
<td>T8: 20 lt/ha. Boro Floable</td>
<td>69,25</td>
<td>A</td>
</tr>
<tr>
<td>T9: 30 lt/ha. Boro Floable</td>
<td>70,50</td>
<td>A</td>
</tr>
</tbody>
</table>

Promedios con letras iguales, no difieren según Test de Tuckey (P=0,05).

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>PROMEDIOS</th>
<th>IGUALDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 : Testigo</td>
<td>81,44</td>
<td>A B</td>
</tr>
<tr>
<td>T1 : 60 kg/ha.</td>
<td>85,50</td>
<td>A D</td>
</tr>
<tr>
<td>T2 : 80 kg/ha.</td>
<td>82,54</td>
<td>A B</td>
</tr>
<tr>
<td>T3 : 100 kg/ha.</td>
<td>81,79</td>
<td>A B</td>
</tr>
<tr>
<td>T4 : 100 kg/ha.</td>
<td>80,12</td>
<td>B C</td>
</tr>
<tr>
<td>T5 : 135 kg/ha.</td>
<td>83,77</td>
<td>A C D</td>
</tr>
<tr>
<td>T6 : 168 kg/ha.</td>
<td>89,44</td>
<td>D</td>
</tr>
<tr>
<td>T7 : 10 lt/ha.</td>
<td>81,97</td>
<td>A B C</td>
</tr>
<tr>
<td>T8 : 20 lt/ha.</td>
<td>77,61</td>
<td>B E</td>
</tr>
<tr>
<td>T9 : 30 lt/ha.</td>
<td>77,31</td>
<td>E</td>
</tr>
</tbody>
</table>

Promedios con letras iguales, no diferencen según Test de Tuckey (P=0,05).

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>PROMEDIOS</th>
<th>IGUALDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 : Testigo</td>
<td>90,71</td>
<td>A</td>
</tr>
<tr>
<td>T1 : 60 kg/ha. Acido Bórico</td>
<td>91,71</td>
<td>A B</td>
</tr>
<tr>
<td>T2 : 80 kg/ha. Acido Bórico</td>
<td>90,60</td>
<td>A</td>
</tr>
<tr>
<td>T3 : 100 kg/ha. Acido Bórico</td>
<td>91,00</td>
<td>A B</td>
</tr>
<tr>
<td>T4 : 100 kg/ha. Bórax</td>
<td>89,25</td>
<td>A</td>
</tr>
<tr>
<td>T5 : 135 kg/ha. Bórax</td>
<td>89,58</td>
<td>A</td>
</tr>
<tr>
<td>T6 : 168 kg/ha. Bórax</td>
<td>95,83</td>
<td>B</td>
</tr>
<tr>
<td>T7 : 10 lt/ha. Boro Floable</td>
<td>87,64</td>
<td>A</td>
</tr>
<tr>
<td>T8 : 20 lt/ha. Boro Floable</td>
<td>87,14</td>
<td>A</td>
</tr>
<tr>
<td>T9 : 30 lt/ha. Boro Floable</td>
<td>87,85</td>
<td>A</td>
</tr>
</tbody>
</table>

Promedios con letras iguales, no difieren según Test de Tuckey (P=0,05).

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>PROMEDIOS</th>
<th>IGUALDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 : Testigo</td>
<td>94,89</td>
<td>A</td>
</tr>
<tr>
<td>T1 : 60 kg/ha. Acido Bórico</td>
<td>94,67</td>
<td>A</td>
</tr>
<tr>
<td>T2 : 80 kg/ha. Acido Bórico</td>
<td>90,90</td>
<td>A</td>
</tr>
<tr>
<td>T3 : 100 kg/ha. Acido Bórico</td>
<td>95,75</td>
<td>A</td>
</tr>
<tr>
<td>T4 : 100 kg/ha. Bórax</td>
<td>93,59</td>
<td>A</td>
</tr>
<tr>
<td>T5 : 135 kg/ha. Bórax</td>
<td>96,69</td>
<td>A</td>
</tr>
<tr>
<td>T6 : 168 kg/ha. Bórax</td>
<td>96,46</td>
<td>A</td>
</tr>
<tr>
<td>T7 : 10 lt/ha. Boro Floable</td>
<td>90,48</td>
<td>A</td>
</tr>
<tr>
<td>T8 : 20 lt/ha. Boro Floable</td>
<td>91,54</td>
<td>A</td>
</tr>
<tr>
<td>T9 : 30 lt/ha. Boro Floable</td>
<td>93,85</td>
<td>A</td>
</tr>
</tbody>
</table>

Promedios con letras iguales, no difieren según Test de Tuckey (P=0,05).

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>PROMEDIOS</th>
<th>IGUALDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 : Testigo</td>
<td>100,62</td>
<td>A</td>
</tr>
<tr>
<td>T1 : 60 kg/ha. Acido Bórico</td>
<td>101,68</td>
<td>A</td>
</tr>
<tr>
<td>T2 : 80 kg/ha. Acido Bórico</td>
<td>100,63</td>
<td>A</td>
</tr>
<tr>
<td>T3 : 100 kg/ha. Acido Bórico</td>
<td>103,09</td>
<td>A</td>
</tr>
<tr>
<td>T4 : 100 kg/ha. Bórax</td>
<td>101,90</td>
<td>A</td>
</tr>
<tr>
<td>T5 : 135 kg/ha. Bórax</td>
<td>101,17</td>
<td>A</td>
</tr>
<tr>
<td>T6 : 168 kg/ha. Bórax</td>
<td>104,19</td>
<td>A</td>
</tr>
<tr>
<td>T7 : 10 lt/ha. Boro Floable</td>
<td>99,92</td>
<td>A</td>
</tr>
<tr>
<td>T8 : 20 lt/ha. Boro Floable</td>
<td>100,75</td>
<td>A</td>
</tr>
<tr>
<td>T9 : 30 lt/ha. Boro Floable</td>
<td>98,14</td>
<td>A</td>
</tr>
</tbody>
</table>

Promedios con letras iguales, no difieren según Test de Tuckey (P=0,05).

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>PROMEDIOS</th>
<th>IGUALDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 : Testigo</td>
<td>109,83</td>
<td>A</td>
</tr>
<tr>
<td>T1 : 60 kg/ha. Acido Bórico</td>
<td>105,38</td>
<td>A</td>
</tr>
<tr>
<td>T2 : 80 kg/ha. Acido Bórico</td>
<td>105,07</td>
<td>A</td>
</tr>
<tr>
<td>T3 : 100 kg/ha. Acido Bórico</td>
<td>107,46</td>
<td>A</td>
</tr>
<tr>
<td>T4 : 100 kg/ha. Bórax</td>
<td>104,90</td>
<td>A</td>
</tr>
<tr>
<td>T5 : 135 kg/ha. Bórax</td>
<td>110,05</td>
<td>A</td>
</tr>
<tr>
<td>T6 : 168 kg/ha. Bórax</td>
<td>106,12</td>
<td>A</td>
</tr>
<tr>
<td>T7 : 10 lt/ha. Boro Floable</td>
<td>107,36</td>
<td>A</td>
</tr>
<tr>
<td>T8 : 20 lt/ha. Boro Floable</td>
<td>107,31</td>
<td>A</td>
</tr>
<tr>
<td>T9 : 30 lt/ha. Boro Floable</td>
<td>103,17</td>
<td>A</td>
</tr>
</tbody>
</table>

Promedios con letras iguales, no difieren según Test de Tuckey (P=0,05).
ANEXO 17. Diámetro polar de los frutos del calibre 30 o menos, en milímetros, tratamientos al suelo, palto cv. Hass, Quillota, V Región.

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>PROMEDIOS</th>
<th>IGUALDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 : Testigo</td>
<td>113,00</td>
<td>A</td>
</tr>
<tr>
<td>T1 : 60 kg/ha. Acido Bórico</td>
<td>115,00</td>
<td>A</td>
</tr>
<tr>
<td>T2 : 80 kg/ha. Acido Bórico</td>
<td>114,00</td>
<td>A</td>
</tr>
<tr>
<td>T3 : 100 kg/ha. Acido Bórico</td>
<td>117,46</td>
<td>A</td>
</tr>
<tr>
<td>T4 : 100 kg/ha. Bórax</td>
<td>110,14</td>
<td>A</td>
</tr>
<tr>
<td>T5 : 135 kg/ha. Bórax</td>
<td>113,33</td>
<td>A</td>
</tr>
<tr>
<td>T6 : 168 kg/ha. Bórax</td>
<td>111,60</td>
<td>A</td>
</tr>
<tr>
<td>T7 : 10 lt/ha. Boro Floable</td>
<td>121,00</td>
<td>A</td>
</tr>
<tr>
<td>T8 : 20 lt/ha. Boro Floable</td>
<td>114,50</td>
<td>A</td>
</tr>
<tr>
<td>T9 : 30 lt/ha. Boro Floable</td>
<td>110,50</td>
<td>A</td>
</tr>
</tbody>
</table>

Promedios con letras iguales, no difieren según Test de Tuckey (P=0,05).

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N %:</td>
<td>2,050</td>
</tr>
<tr>
<td>P %:</td>
<td>0,067</td>
</tr>
<tr>
<td>K %:</td>
<td>0,940</td>
</tr>
<tr>
<td>Ca %:</td>
<td>2,220</td>
</tr>
<tr>
<td>Mg %:</td>
<td>0,500</td>
</tr>
<tr>
<td>Zn ppm:</td>
<td>35,00</td>
</tr>
<tr>
<td>Mn ppm:</td>
<td>220,00</td>
</tr>
<tr>
<td>Fe ppm:</td>
<td>134,00</td>
</tr>
<tr>
<td>Cu ppm:</td>
<td>25,00</td>
</tr>
<tr>
<td>B ppm:</td>
<td>17,00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>%</th>
<th>T0</th>
<th>T10</th>
<th>T11</th>
<th>T12</th>
<th>T13</th>
<th>T14</th>
<th>T15</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1.66</td>
<td>1.63</td>
<td>1.77</td>
<td>1.58</td>
<td>1.69</td>
<td>1.90</td>
<td>1.59</td>
</tr>
<tr>
<td>P</td>
<td>0.03</td>
<td>0.14</td>
<td>0.03</td>
<td>0.03</td>
<td>0.04</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>K</td>
<td>1.09</td>
<td>0.84</td>
<td>1.09</td>
<td>1.04</td>
<td>1.04</td>
<td>1.09</td>
<td>0.93</td>
</tr>
<tr>
<td>Ca</td>
<td>2.24</td>
<td>2.49</td>
<td>2.17</td>
<td>2.17</td>
<td>2.30</td>
<td>2.49</td>
<td>2.47</td>
</tr>
<tr>
<td>Mg</td>
<td>0.47</td>
<td>0.60</td>
<td>0.55</td>
<td>0.49</td>
<td>0.52</td>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td>ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>14</td>
<td>12</td>
<td>14</td>
<td>15</td>
<td>14</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>Mn</td>
<td>265</td>
<td>235</td>
<td>245</td>
<td>285</td>
<td>275</td>
<td>295</td>
<td>250</td>
</tr>
<tr>
<td>Fe</td>
<td>235</td>
<td>251</td>
<td>229</td>
<td>253</td>
<td>245</td>
<td>239</td>
<td>240</td>
</tr>
<tr>
<td>Cu</td>
<td>42</td>
<td>36</td>
<td>37</td>
<td>36</td>
<td>36</td>
<td>50</td>
<td>39</td>
</tr>
<tr>
<td>B</td>
<td>18</td>
<td>18</td>
<td>14</td>
<td>19</td>
<td>17</td>
<td>21</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>T0</th>
<th>T10</th>
<th>T11</th>
<th>T12</th>
<th>T13</th>
<th>T14</th>
<th>T15</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1,99</td>
<td>1,93</td>
<td>2,13</td>
<td>2,07</td>
<td>2,34</td>
<td>1,91</td>
<td>2,00</td>
</tr>
<tr>
<td>P</td>
<td>0,12</td>
<td>0,08</td>
<td>0,08</td>
<td>0,06</td>
<td>0,10</td>
<td>0,06</td>
<td>0,08</td>
</tr>
<tr>
<td>K</td>
<td>1,10</td>
<td>1,05</td>
<td>1,25</td>
<td>1,10</td>
<td>1,05</td>
<td>1,00</td>
<td>0,96</td>
</tr>
<tr>
<td>Ca</td>
<td>2,10</td>
<td>1,80</td>
<td>2,26</td>
<td>1,97</td>
<td>1,88</td>
<td>2,33</td>
<td>2,17</td>
</tr>
<tr>
<td>Mg</td>
<td>0,45</td>
<td>0,50</td>
<td>0,52</td>
<td>0,50</td>
<td>0,48</td>
<td>0,47</td>
<td>0,50</td>
</tr>
<tr>
<td>ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>17</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>17</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>Mn</td>
<td>200</td>
<td>155</td>
<td>170</td>
<td>170</td>
<td>195</td>
<td>195</td>
<td>200</td>
</tr>
<tr>
<td>Fe</td>
<td>156</td>
<td>157</td>
<td>152</td>
<td>173</td>
<td>144</td>
<td>134</td>
<td>137</td>
</tr>
<tr>
<td>Cu</td>
<td>16</td>
<td>16</td>
<td>18</td>
<td>16</td>
<td>16</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>B</td>
<td>37</td>
<td>39</td>
<td>29</td>
<td>31</td>
<td>27</td>
<td>28</td>
<td>41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ppm</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
<th>T8</th>
<th>T9</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1,99</td>
<td>2,12</td>
<td>2,06</td>
<td>2,29</td>
<td>2,10</td>
<td>2,17</td>
<td>2,28</td>
<td>2,07</td>
<td>2,02</td>
<td>2,04</td>
</tr>
<tr>
<td>P</td>
<td>0,12</td>
<td>0,16</td>
<td>0,11</td>
<td>0,12</td>
<td>0,12</td>
<td>0,11</td>
<td>0,11</td>
<td>0,10</td>
<td>0,10</td>
<td>0,09</td>
</tr>
<tr>
<td>K</td>
<td>1,10</td>
<td>1,28</td>
<td>1,15</td>
<td>1,10</td>
<td>1,10</td>
<td>0,90</td>
<td>0,93</td>
<td>0,91</td>
<td>0,18</td>
<td>0,90</td>
</tr>
<tr>
<td>Ca</td>
<td>2,10</td>
<td>1,99</td>
<td>2,29</td>
<td>1,92</td>
<td>2,10</td>
<td>1,93</td>
<td>2,12</td>
<td>2,30</td>
<td>2,08</td>
<td>2,05</td>
</tr>
<tr>
<td>Mg</td>
<td>0,45</td>
<td>0,43</td>
<td>0,46</td>
<td>0,55</td>
<td>0,45</td>
<td>0,55</td>
<td>0,60</td>
<td>0,45</td>
<td>0,49</td>
<td>0,45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ppm</th>
<th>Zn</th>
<th>Mn</th>
<th>Fe</th>
<th>Cu</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>17</td>
<td>200</td>
<td>156</td>
<td>16</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>185</td>
<td>151</td>
<td>18</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>220</td>
<td>116</td>
<td>18</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>170</td>
<td>130</td>
<td>17</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>170</td>
<td>109</td>
<td>15</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>155</td>
<td>134</td>
<td>20</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>240</td>
<td>124</td>
<td>17</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>165</td>
<td>119</td>
<td>15</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>165</td>
<td>113</td>
<td>20</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>155</td>
<td>131</td>
<td>16</td>
<td>51</td>
</tr>
</tbody>
</table>
ANEXO 22. Análisis de tejido foliar, contenido de boro en ppm, de acuerdo a las categorías de producción alta (A) y baja (B), tratamientos al follaje, muestreados el 18 de marzo de 1992, palto cv. Hass, Quillota, V Región.

<table>
<thead>
<tr>
<th>Boro</th>
<th>T0</th>
<th>T10</th>
<th>T11</th>
<th>T12</th>
<th>T13</th>
<th>T14</th>
<th>T15</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>22</td>
<td>20</td>
<td>37</td>
<td>33</td>
<td>22</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>B</td>
<td>28</td>
<td>22</td>
<td>22</td>
<td>33</td>
<td>25</td>
<td>26</td>
<td>28</td>
</tr>
</tbody>
</table>
ANEXO 23. Análisis de tejido foliar, contenido de boro en ppm, de acuerdo a las categorías de producción alta (A) y baja (B), tratamientos al suelo, muestreados el 18 de marzo de 1992, palto cv. Hass, Quillota, V Región.

<table>
<thead>
<tr>
<th></th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
<th>T8</th>
<th>T9</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>28</td>
<td>26</td>
<td>26</td>
<td>40</td>
<td>27</td>
<td>47</td>
<td>40</td>
<td>30</td>
<td>30</td>
<td>29</td>
</tr>
<tr>
<td>B</td>
<td>22</td>
<td>40</td>
<td>43</td>
<td>36</td>
<td>33</td>
<td>34</td>
<td>25</td>
<td>25</td>
<td>41</td>
<td>32</td>
</tr>
</tbody>
</table>
ANEXO 24. Análisis de tejido foliar, muestreados el 23 de junio de 1992, tratamientos al suelo, de acuerdo alas categorías de producción alta (A) y baja (B), y a la edad y procedencia de la hoja, (1) del flash de primavera y sin crecimiento de verano, (1’) del flash de primavera y con crecimiento de verano, (2) del flash de verano.

<table>
<thead>
<tr>
<th>Boro</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
<th>T8</th>
<th>T9</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>19</td>
<td>20</td>
<td>18</td>
<td>28</td>
<td>23</td>
<td>22</td>
<td>14</td>
<td>12</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>B1</td>
<td>18</td>
<td>27</td>
<td>24</td>
<td>28</td>
<td>20</td>
<td>21</td>
<td>23</td>
<td>21</td>
<td>22</td>
<td>15</td>
</tr>
<tr>
<td>A1’</td>
<td>23</td>
<td>20</td>
<td>25</td>
<td>28</td>
<td>17</td>
<td>21</td>
<td>25</td>
<td>20</td>
<td>23</td>
<td>18</td>
</tr>
<tr>
<td>B1’</td>
<td>17</td>
<td>23</td>
<td>24</td>
<td>20</td>
<td>32</td>
<td>19</td>
<td>25</td>
<td>19</td>
<td>15</td>
<td>37</td>
</tr>
<tr>
<td>A2</td>
<td>33</td>
<td>44</td>
<td>40</td>
<td>67</td>
<td>27</td>
<td>52</td>
<td>36</td>
<td>41</td>
<td>39</td>
<td>33</td>
</tr>
<tr>
<td>B2</td>
<td>22</td>
<td>39</td>
<td>48</td>
<td>24</td>
<td>68</td>
<td>46</td>
<td>34</td>
<td>35</td>
<td>24</td>
<td>24</td>
</tr>
</tbody>
</table>