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ABSTRACT The non-native redbay ambrosia beetle, Xyleborus glabratus Eichhoff (Coleoptera: Cur-
culionidae: Scolytinae), has recently emerged as a signiÞcant pest of southeastern U.S. coastal forests.
SpeciÞcally, a fungal symbiont (Raffaelea sp.) of X. glabratus has caused mortality of redbay (Persea
borbonia) and sassafras (Sassafras albidum) trees in the region; several other Lauraceae species also seem
susceptible. Although the range of X. glabratus continues to expand rapidly, little is known about the
speciesÕ biology and behavior. In turn, there has been no broad-scale assessment of the threat it poses to
eastern U.S. forests. To provide a basic information framework, we performed analyses exploiting relevant
spatio-temporal data available forX. glabratus. First, we mapped the densities of redbay and sassafras from
forest inventory data. Second, we used climate matching to delineate potential geographic limits for X.
glabratus.Third,weusedcounty infestationdata toestimatetherateof spreadandmodeledspreadthrough
time, incorporating host density as a weighting factor. Our results suggest that (1) key areas with high
concentrations of redbay have yet to be invaded, but some are immediately threatened; (2) climatic
conditionsmayserve toconstrainX.glabratus to thesoutheasternU.S. coastal region;and(3) ifunchecked,
X. glabratus may spread throughout the range of redbay in �40 yr. Disruption of anthropogenic, long-
distance dispersal could reduce the likelihood of this outcome.
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The non-native redbay ambrosia beetle,Xyleborus gla-
bratus Eichhoff (Coleoptera: Curculionidae: Scolyti-
nae), has become a signiÞcant pest in southeastern
U.S. coastal forests. It was Þrst recorded in the United
States in 2002, when three adults were collected from
traps placed in Port Wentworth, GA, as part of an early
detection effort funded by the USDA Forest Service
(Rabaglia 2003, Fraedrich et al. 2007).X. glabratuswas
likely established in the vicinity by this time, but the
beetleÕs potential impact was unclear until it was
linked to severe mortality (�75% trees killed) of red-
bay (Persea borbonia L. Spreng.) on Hilton Head Is-
land, SC, in 2003Ð2004 (Rabaglia 2003, Fraedrich et al.
2007). The trees actually died of laurel wilt, a disease
caused by a recently identiÞed fungal symbiont (Raf-
faelea sp.) ofX. glabratus; the beetle is the only known
vector (Fraedrich et al. 2007). By 2005, X. glabratus
and the laurel wilt fungus were linked to redbay and,
in some cases, sassafras [Sassafras albidum (Nutt.)
Nees] mortality in several counties in Georgia and
South Carolina, as well as redbay mortality at the
Timucuan Ecological and Historic Preserve in Duval
County, FL (MayÞeld and Thomas 2006). The beetleÕs
extent in the United States has continued to expand
steadily (Fig. 1; most current distribution map is

available from http://www.fs.fed.us/r8/foresthealth/
laurelwilt/dist_map.shtml), with anecdotal estimates
of the rate of spread ranging from �30 to 100 km/yr;
accidental long-distance transport by humans is likely
also a factor, as suggested by the detection of X. gla-
bratus in Indian River County, FL, in 2006, �200 km
from the closest other county known to be infested.
Xyleborus glabratus is 1 of 10 ambrosia beetle species

Þrst reported intheUnitedStatesbetween1985and2005
(Haack 2006). The species is native to India (the states
of Assam and Bengal), Bangladesh, Myanmar, Japan (in-
cluding the Bonin Islands), and Taiwan (Holistic Insect
Systematics Laboratory 2004, Rabaglia et al. 2006). Its
arrival is consistent with predictions that newly invading
ambrosiabeetle specieswould likelycomefromAsiaand
become established in the eastern United States, where
environmental conditions are most compatible (Atkin-
sonetal.1990,SchieferandBright2004).X.glabratuswas
likely introduced through solid wood packing materials
(Fraedrichet al. 2007); species fromthegenusXyleborus
have historically been among the most commonly inter-
cepted Scolytinae species in commercial cargo ship-
ments arriving at U.S. ports of entry (Haack 2003). No-
tably, a substantial proportion of all Scolytinae
interceptions in the last two decades have occurred in
the southeastern United States (Haack 2006).

The cryptic nature of ambrosia beetles makes them
difÞcult to detect, such that they may travel unnoticed
in shipments of trees or wood products (Oliver and
Mannion 2001, Rabaglia et al. 2006). Most ambrosia
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beetle species exhibit a fairly broad range of host
plants (Beaver 1979, Rabaglia 2003, Schiefer and
Bright 2004). Species from the tribe Xyleborina, in
particular, have a polygamous, extreme inbred sib-
mating system (Normark et al. 1999, Rabaglia 2003).
All of these factors combine to facilitate their spread
and establishment in new areas. Despite this, ambrosia
beetles are generally viewed as secondary invaders
(Kühnholz et al. 2001), and X. glabratus is indeed
believed to attack only stressed or injured trees in its
native range (Rabaglia 2003). However, X. glabratus
seems to resemble other non-native ambrosia beetle

species in that, on invading the United States, it has
attacked apparently healthy host trees (Oliver and
Mannion 2001, MayÞeld and Thomas 2006).

Whereas bark beetles feed on the phloem tissue of
theirhosts,ambrosiabeetlesfeedonsymbioticfungi(i.e.,
ambrosia), typically carried in the mycangia of females
and introduced when they bore galleries into the living
sapwood of host trees or shrubs (Furniss and Carolin
1977, Kühnholz et al. 2001, Mizuno and Kajimura 2002).
These fungi may be pathogenic (Kühnholz et al. 2001,
Oliver and Mannion 2001), although noRaffalea species
was previously known to kill woody plants until mass
mortalityofoaks(Quercus sp.) in Japanwasattributed to
RaffaleaquercivoraKubono et Shin, a fungal symbiont of
the ambrosia beetle Platypus quercivorus Murayama
(Kubono and Ito 2002, Kinuura and Kobayashi 2006). It
has been hypothesized that fungi associated with non-
nativeambrosiabeetlesmaybemorepathogenic inhosts
with which they have not co-evolved, and this may par-
tially explain the increased prevalence of invasives such
as X. glabratus on apparently healthy hosts and the in-
creased mortality of those hosts (Kühnholz et al. 2001).

Documented hosts of X. glabratus in the beetleÕs
native range include one species each from the
Dipterocarpaceae (Shorea robusta Gaertner f.), Fa-
gaceae [Lithocarpus edulis (Makino) Nakai], and
Fabaceae (Leucaena glaucaL. Benth.) families, as well
as three species from the Lauraceae family: Lindera
latifolia Hook. f., Litsea elongata (Wall. ex Nees)
Benth. and Hook. f., and Phoebe lanceolata (Wall. ex
Nees)Nees(Rabagliaet al. 2006).All currentlyknown
hosts in the southeastern United States are Lauraceae
species. Besides redbay and sassafras, the laurel wilt
fungus has been found on two shrubs, pondberry [Lin-
dera melissifolia (Walt.) Blume] and pondspice (Lit-
sea aestivalis L. Fern.), both of which are critically
endangered (Fraedrich et al. 2007, USDA Forest Ser-
vice 2007b). Laboratory pathogenicity tests suggest
several other Lauraceae species found in the United
States are susceptible to the fungus: California bay
laurel [Umbellularia californica (Hook. and Arn.)
Nutt.], swampbay [Persea palustris (Raf.) Sarg.],
northern spicebush (Lindera benzoin L. Blume),
and the non-native but commercially planted avo-
cado (Persea americana Mill.) (USDA Forest Ser-
vice 2007b).

There are ongoing Þeld and laboratory studies to
address the many unknowns regarding the biology,
behavior, and potential for control of this recently
emerged pest (USDA Forest Service 2007b). Forest
health managers and policymakers will also need in-
formation from broader spatial and temporal scales as
they decide how best to manage the expansion of X.
glabratus and its associated fungus. To our knowledge,
there has not been a broad-scale assessment of the
threatX. glabratus represents to eastern U.S. forests, so
we made the completion of such an assessment our
primary objective. In support of this objective, we
performed analyses in which we could exploit the
limited, coarse-scale data that are typically available
for a new invasive pest. First, we mapped the densities
of redbay and sassafras, the two most important host

Fig. 1. County distribution of redbay mortality caused by
X. glabratus and the associated laurel wilt fungus (Raffaelea
sp.). Yr indicates Þrst conÞrmed detection. Map is current
through October 2007; the most recent version is available
from the USDA Forest Service (http://www.fs.fed.us/r8/
foresthealth/laurelwilt/dist map.shtml).
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species in the eastern United States. Second, we used
climate matching to delineate potential limits to the
geographic distribution of X. glabratus and its associ-
ated fungus. Third, we used county-level infestation
data to estimate a rate of spread for X. glabratus and
spatially modeled the pattern of spread through time,
incorporating host density as a weighting factor. By
combining these analyses, we hoped to describe the
regional pattern of risk and provide a foundation for
prioritizing future management and research efforts.

Materials and Methods

Except where speciÞed, we used ArcGIS 9.2 software,
primarily the Spatial Analyst and Geostatistical Analyst
extensions (Environmental Systems Research Institute
2002, 2003), to perform geospatial operations, and SAS
9.1 (SAS Institute 2004) for statistical analyses.
Host DensityMaps.We generated density maps for

redbay and sassafras, the most prominent of the con-
Þrmed host species of X. glabratus, through ordinary
kriging (Cressie 1993) of USDA Forest Service Forest
Inventory and Analysis (FIA) phase 2 plot data. The
FIA Program collects data from a network of perma-
nent ground plots distributed across the United States.
Each plot represents �2,400 ha of land area (Reams et
al. 2005). The 1998 Farm Bill (Public Law 105Ð185)
prescribed that FIA was to perform annual forest in-
ventories; typically, 1/5 of the plots in a state (or 1/10
in PaciÞc Coast and Intermountain West states) are
visited in a given year, yielding a complete inventory
in 5 (or 10) yr (Reams et al. 2005). The cycle is
repeated, allowing the estimation of forest attributes
through time. A number of states in the eastern United
States have already completed at least one cycle of the
annualized FIA inventory. In addition, all states per-
formed periodic forest inventories before annualiza-
tion. As a result, it is possible to assemble a compre-
hensive, nationwide network of plots, most of which
have been measured in the past 10 yr. A consistent set
of quantitative and qualitative attributes are recorded
for trees (�2.5 cm diameter) on each plot, allowing
calculation of density, in trees per hectare, for each
tree species present (USDA Forest Service 2007a). To
preserve landowner privacy and Þeld plot integrity,
the plotsÕ geographic coordinates are systematically
manipulated before the release of the data to the
public. However, this perturbation has been shown to
have a negligible effect on the accuracy of kriging
estimates (Coulston et al. 2006).

For redbay and sassafras, we Þrst identiÞed all of the
Forest Service ecoregion sections (McNab et al. 2005)
that contained FIA plots in which each species oc-
curred (19 sections for redbay, 57 sections for sassa-
fras). For each species, we assembled all plots that fell
within the identiÞed ecoregion sections into a geo-
graphically referenced sample (N � 24,984 plots for
redbay, N � 59,844 plots for sassafras) of trees per
hectare values. We Þt a spherical semivariogram
model to the sample for each species using weighted
least squares (Cressie 1993); the Þtted models subse-
quently determined kriging weights during spatial in-

terpolation. To improve the likelihood that only eco-
logically similar plots would inßuence the predicted
values at unknown locations, we performed separate
interpolations for each ecoregion section. Predicted
values were estimated based on the 30 closest FIA
plots or, if the number of plots within a 60-km radius
of an unknown location was �30, then based on all
plots that fell within this distance threshold. The re-
sulting kriged surfaces for each section were merged
into comprehensive trees per ha maps (1-km2 spatial
resolution) for each species, which we masked using
a forest cover map developed by the USDA Forest
Service Remote Sensing Applications Center from
Moderate Resolution Imaging Spectroradiometer
(MODIS) satellite imagery.
ClimateMatching.Although there are no deÞnitive

ecological rules regarding where an invasive species is
likely to become established, climate strongly shapes
the distribution and abundance of insect species
(McKenney et al. 2003, Peacock et al. 2006). Climate
matching, which falls under the broader umbrella of
ecological niche modeling, is a predictive approach
that assumes the potential geographic extent of a spe-
cies is constrained by the same climatic conditions that
limit the speciesÕ distribution within its native range
(Peterson 2003). A number of software tools have
been developed to generate niche models using con-
tinental- or global-scale climatic and environmental
data (McKenney et al. 2003, Peterson 2003); the
CLIMEX model, for instance, was designed for appli-
cation to invasive pest species, including insects (Vera
et al. 2002, Sutherst and Maywald 2005). We compared
climatic conditions in the conterminous United States
with conditions in the native range of X. glabratus
using the North Carolina State UniversityÐAPHIS
Plant Pest Forecast System (NAPPFAST), a recently
developed, Internet-based modeling environment
(http://www.nappfast.org). NAPPFAST links global
data sets for a large suite of climatic and environmental
variables with biological modeling templates (Ma-
garey et al. 2007). It includes a climate matching tool
with a map-based interface for entering features
(polygons or points) representing a pest speciesÕ
known geographic range. Based on a user-selected set
of input variables, NAPPFAST generates gridded
maps (�10-km2 resolution) of all areas worldwide
with conditions matching those in the deÞned range.

We used NAPPFAST to generate a climate-match
mapdepicting thepotential rangeofX.glabratus in the
United States. To represent its presumed native range,
we Þrst delineated the Asian countries where the
beetle is known to occur in the NAPPFAST map in-
terface. Because speciÞc observational data on the
beetleÕs distribution were unavailable, we typically
included entire countries in our delineations. How-
ever, we included only the states of Assam and Bengal
from India. Furthermore, we omitted Hokkaido and
the northern part of Honshu from our delineation of
Japan; L. edulis, the only host of X. glabratus found in
Japan, is limited to southern portions of the country
(Levy-Yamamori and Taaffe 2004, Global Biodiversity
Information Facility 2007).
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In general, temperature is the most important cli-
matic variable affecting the distributions of insect spe-
cies, but speciesÕ distributions are rarely determined
by a single variable, e.g., moisture also affects insect
life cycles and host availability (Baker et al. 2000,
Peacock et al. 2006). Conversely, the ability to include
predictor variables from a large suite of possibilities
may be problematic, because predictive power de-
creases with a greater number of variables caused by
the increased potential for spurious correlations (Lo-
gan et al. 2003). With these points in mind, we applied
a model for the climate-match map that included three
annual variables (Table 1): 10-yr extreme minimum
temperature; growing degree-days, a measure of ac-
cumulated warmth supporting the growth of organ-
isms; and growing season moisture percentage (Akin
1991), a ratio of precipitation to potential evapotrans-
piration that reßects the overall water budget. In
addition, because seasonal variation in climatic con-
ditions may also inßuence speciesÕ potential distribu-
tions, we included the amount of rainfall in each
month of the approximate growing season, April
through October (Table 1). For evaluation, we over-
laid the results of the model on the distributions of
redbay and sassafras as mapped from FIA plot data.
SpreadModeling.The rate of spread for an invasive

forest pest may be reliably estimated from coarse,
county-scale infestation data; indeed, such an estimate
is unlikely to differ signiÞcantly from the estimate
possible with a spatially dense monitoring network
(Tobin et al. 2007a). We estimated a rate of spread for
X. glabratus and its associated fungus using the county
infestation data depicted in Fig. 1. We followed pro-

cedures, outlined by Banks (1994), for calculating the
velocity of an expanding dispersion wave under the
assumption of radial dispersion with exponential pop-
ulation growth. We Þrst calculated annual infestation
extents for 2004, 2005, and 2006 as the total area of all
counties infested by X. glabratus as of the year in
question: 4,398 km2 in 2004, 18,965 km2 in 2005, and
41,480 km2 in 2006. If the dispersion geometry is as-
sumed to be semicircular (i.e., constrained on one side
by a barrier such as a coastline), the infestation extent
A at time t, and its square rootÑwhich generally in-
creases linearly with time (Hengeveld 1989)Ñmay be
approximated as

A �
�R2

2
� 2�aDt2 [1]

and

�A � �2�aDt [2]

where R � the radius of the semicircular invasion
extent, a � the net growth rate, and D � the dispersion
coefÞcient (Banks 1994). We applied the 2004Ð2006

data in a least squares regression of t (yr) on �A to

derive an estimate of �2�aD and, subsequently,

the dispersion velocity, 2�aD, for X. glabratus in ki-
lometers per year.

Based on this estimated rate of spread, we modeled
the range expansion ofX. glabratus through time using
a cost-weighted distance function in a gridded geo-
graphic information system (GIS). Cost-weighted dis-
tance functions have seen recent application for mod-
eling habitat connectivity and the migration of
organisms within those habitats (Michels et al. 2001,
Adriaensen et al. 2003, Dedecker et al. 2007). Con-
ceptually, these functions adjust the Euclidean dis-
tance between any given cell in a map grid and a
designated source cell (e.g., the location of an initial
infestation) according to an underlying resistance
grid, such that the effective distance, or cost of trav-
eling, between the cells may be more or less than the
Euclidean distance; resistance values greater than one
increase, and values less than one decrease, the ef-
fective distance. In the output grid of a cost-weighted
distance function, each cell is assigned a value repre-
senting the least cumulative cost of traveling between
that cell and the nearest designated source cell (En-
vironmental Systems Research Institute 2002). Algo-
rithmically, for any movement from cell Xi to one of
its neighbors Xi�1, the cumulative cost is calculated as
the cost to travel from the nearest source cell to cell
Xi, plus the average cost of moving through Xi and
Xi�1, where cost equals the spatial resolution of the
grid (i.e., the distance between adjacent cell cen-
troids) multiplied by the value from the underlying
resistance grid (Environmental Systems Research In-
stitute 2002, Adriaensen et al. 2003, Dedecker et al.
2007). Averaging ensures that the relationship be-
tween cells is symmetrical (Adriaensen et al. 2003).
With respect to a cell and its four diagonal neighbors,

costs are multiplied by �2 to reßect the greater dis-
tance between them (Dedecker et al. 2007).

Table 1. Variables used in climate matching model, including
their minimum and maximum values found within the estimated
native geographic range of X. glabratus

Variable
Minimum

value
Maximum

value

10-yr mean extreme min. cold
temp (�C)

�26.67 15.56

30-yr mean growing degree days
(baseline temp 10�C)a

1,645 13,036

30-yr mean growing season
moisture (%)b

61 482

30-yr mean April precipitation
(mm)

2.03 301.5

30-yr mean May precipitation
(mm)

44.45 632.21

30-yr mean June precipitation
(mm)

80.01 949.45

30-yr mean July precipitation
(mm)

139.45 918.21

30-yr mean Aug. precipitation
(mm)

105.41 916.18

30-yr mean Sept. precipitation
(mm)

95.5 579.12

30-yr mean Oct. precipitation
(mm)

46.48 300.48

a The contribution of any given day in the year to the cumulative
annual growing degree-days is based on the difference between the
mean of the minimum and maximum daily temperature and the
baseline temperature.
b Percent ratio of precipitation to potential evapotranspiration (see

Akin 1991).
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Developing a resistance grid with appropriate val-
ues is the chief obstacle for cost-weighted distance
analyses, often requiring detailed literature review
and expert judgment (Adriaensen et al. 2003). How-
ever, in cases where little is known about a pest, it is
possible toadopt simplifyingassumptionsandestimate
resistance values from the few relevant data that are
available. We developed a resistance grid for X. gla-
bratus using a map of host density, under the assump-
tion that the rate of spread for the beetle across a given
region is inversely related to availability of susceptible
hosts. The primary component of the host density map
was our kriged map of redbay trees per hectare. Al-
though X. glabratus has been observed to attack sas-
safras trees, these attacks have thus far occurred in
areas where redbay is common; thus, it remains un-
certain whether the beetle is attracted to and will
infest sassafras in theabsenceof redbay.Therefore,we
only included sassafras trees per hectare in the total
host density value for grid cells where the redbay trees
per hectare value was also greater than zero.

We generated a series of simple step functions,
relating host density to resistance, in which we varied
the minimum and maximum resistance values and the
threshold values deÞning each step. We applied these
step functions to construct preliminary resistance sur-
faces and subsequent spread maps, which we com-
pared with the county infestation data. After selecting
the step function that best approximated the infesta-
tion pattern through time, we developed a continuous
resistance function by Þtting this step function with

the complemented Weibull equation (Haefner 2005),
a ßexible equation regularly used for biological mod-
eling applications:

y � a � exp���x

b�
c� [3]

where x � the trees per hectare value, y � the cost
value, a � a parameter that scales the maximum value,
b � a parameter that controls the point on the x-axis
at which the function is approximately zero, and c �
a parameter specifying whether the function is convex
or concave. We estimated parameters a, b, and c for
the equation using PROC NLIN in SAS (SAS Institute
2004). We applied the resulting continuous function
to our map of host density to generate our resistance
grid, which we used to create a map of cost-weighted
distance (1-km2 resolution) from points of origin (i.e.,
source cells) in Beaufort County, SC, as well as Duval
and Indian River Counties in Florida. We assumed the
latter two points of origin represented initially isolated
infestations caused by accidental long-distance trans-
port of the redbay ambrosia beetle from locations to
the north. We assumed all three originating infesta-
tions began 1 yr before the conÞrmed presence of the
beetle and/or fungus at each location (i.e., 2004 for
Beaufort County, SC; 2005 for Duval County, FL; 2006
for Indian River County, FL). We reclassiÞed the
output cost-weighted distance map using an increas-
ing series of equal intervals, derived from the calcu-
lated rate of spread forX. glabratus (i.e., one times the

Fig. 2. Map of redbay density in trees per hectare.
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rate of spread, two times the rate of spread, etc.), to
represent the area the beetle would be likely to invade
with each additional year of spread.

Results

Host Density Maps. Semivariogram parameters and
descriptive statistics for the spatial interpolations of
redbay and sassafras density (Figs. 2 and 3) are shown
in Table 2. Redbay (Fig. 2) is distributed throughout
the coastal plain of the southeastern United States,
typically at low densities (�50 trees/ha). Its range
extends along the Atlantic Coast from southern Flor-
ida to southern Virginia and west along the Gulf of
Mexico to eastern Texas. An apparent break in the
distribution of redbay near the Mississippi River is
primarily because of the limited amount of forestland
in this area. There are several areas of moderate to
high redbay density in Georgia and South Carolina,
particularly a large area in southern Georgia, most of
which falls just beyond the counties where X. glab-
ratus is known to be present (see Fig. 1). A similar area
falls just north of the known invaded counties in South
Carolina. The greatest concentration of redbay by far
is found on the Albemarle Peninsula of eastern North
Carolina, where redbay densities are consistently
�300 trees/ha. Sassafras (Fig. 3) is widely distributed
at low densities (�30 trees/ha) throughout the south-
eastern United States, in some cases overlapping the
distribution of redbay. There are a few areas of mod-
erate to high sassafras density in Mississippi, but high

concentrations of sassafras are most typically found to
the north, especially in a band stretching from north-
easternOklahomatoOhioandWestVirginia. Sassafras
persists at moderate densities into the lower peninsula
of Michigan and can be found at low densities in New
England as far north as New Hampshire. Notably, with
the exception of some gaps in the Piedmont region
from Georgia to Virginia, and in the sparsely forested
area along the Mississippi River, the distribution of
sassafras appears to be nearly continuous starting at
the upper portion of the southeastern U.S. coastal
plain.
Climate Matching. Each variable used in the cli-

mate matching model (Table 1) exhibited a wide
range of values, which may be attributed to the ap-
proximate manner in which we deÞned the native
geographic range for X. glabratus (i.e., delineating
countries or large portions of countries instead of
observations of the beetleÕs occurrence at speciÞc
point locations). Despite the coarseness of the inputs,
themapresulting fromthemodel (Fig. 4) suggests that
the suitable area is largely constrained to the south-

Fig. 3. Map of sassafras density in trees per hectare.

Table 2. Parameters (nugget, sill, and range) of the semivar-
iograms used in ordinary kriging of redbay and sassafras trees per
hectare, with descriptive statistics (mean of the observations and
RMSE from cross-validation)

Species Nugget Sill Range Mean RMSE

Redbay 9,431.69 2,856.25 355,600 m 14.18 104.80
Sassafras 8,142.14 1,972.86 212,480 m 16.70 95.41
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eastern U.S. coastal plain, or essentially the range of
redbay. With the exception of a small area in the
southern Appalachian Mountains, no other part of the
conterminous United States is identiÞed as suitable
under the model.
Spread Modeling. The calculated rate of spread for
X. glabratus was 54.8 km/yr. The Þtted equation for
the continuous function relating host density (x), in
trees per hectare, to resistance (y) was

y � 3.0041 � exp��� x

15.6505�
0.1927�. [4]

A graph of this function (Fig. 5) indicates a maxi-
mum resistance value of three when no host is present,
a resistance value of 1 (i.e., where the cost-weighted
distance is equivalent to the Euclidean distance) at
�25 trees/ha, and a resistance value of �0.4 at the
highest possible host density (�600 trees/ha). The
function allows limited spread across areas with little
or no host, which is realistic given the coarse resolu-
tion at which host presence is represented. Based on
the resistance surface generated with this function,
the cost-weighted distance model of X. glabratus
spread (Fig. 6) suggests that the beetle could reach the
northern and southern extents of redbay (in Virginia
and Florida, respectively) between 2015 and 2020 and
the western extent of redbay by 2040.

Discussion

Host Density Maps. High root mean squared error
(RMSE) values from cross-validation when compared
with the observed means (Table 2) suggest some in-
accuracy in the trees per hectare estimates. This is a
by-product of applying an ordinary kriging approach,
which is essentially a weighted-average interpolation
method, to a high-frequency measurement exhibiting
considerable variation between neighboring points.
SigniÞcantly, one would expect similar, but higher,
degrees of error with other spatial interpolation meth-
ods (e.g., inverse distance-squared weighting), be-
cause kriging is typically the best unbiased predictor
among conventional interpolation methods (Cressie
1993, Environmental Systems Research Institute
2003). For this analysis, some error in the kriging
estimates for individual cells in our host maps is not
problematic, because our primary goal was to create
maps with simple, effectively ordinal rankings (i.e.,
from none to very high) of average host density over
relatively large areas; indeed, this is why we used a
sizeable neighborhood of points (typically 30) during
interpolation procedures.

A key observation from the redbay density map is
that the X. glabratus invasion has thus far developed
across a region of South Carolina, Georgia, and north-
ern Florida containing numerous hotspots of moder-
ate to high density. In addition, two hotspots of mod-
erate to high density, one in Georgia and one in South
Carolina, fall just beyond the approximate invasion
front for X. glabratus. In the short term, high redbay
levels in these hotspots may promote the rapid ex-
pansion of the beetle both northward and westward.
Regarding long-term prospects, redbay is mostly
found at low densities outside of the above-described
areas. This could slow the expansion of X. glabratus
somewhat, but given the possibility of long-distance
dispersal, is unlikely to halt the beetleÕs advance. With
respect to sassafras density, the areas where the spe-
cies is abundant are far north of the current infestation
front. However, sassafras does occasionally reach far
enough into the southeastern U.S. coastal plain to

Fig. 4. Predicted U.S. range limits for X. glabratus based
on climate matching with the speciesÕ estimated native geo-
graphic range.
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Fig. 5. Plot of the continuous function, relating resis-
tance value to host density, used to generate the resistance
surface for cost-weighted distance modeling.
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increase the density of available host in some parts of
the coastal region.
Climate Matching. The climate matching tool in

NAPPFAST is simple compared with software such as
CLIMEX that includes more sophisticated modeling
functionality (Vera et al. 2002, Sutherst and Maywald
2005). Nevertheless, the NAPPFAST tool has several
advantageous characteristics: an Internet-based inter-
face, a short user learning curve, and a minimal re-
quirement of expert judgment in the modeling pro-
cess. All climate matching tools are impacted by the
quality of the data deÞning the native distribution of
the species of interest. McKenney et al. (2003) noted
that a pest species with a restricted extent in its native
environment may occupy a very different extent on
introduction into a new environment. This observa-
tion emphasizes a major criticism of climate matching
techniques, that they ignore competition, predation,
host interactions, and other factors that serve to con-
strain a speciesÕ distribution to a subset, i.e., its eco-
logical niche, within its full native range (Baker et al.
2000, McKenney et al. 2003, Peterson 2003). These
omissions may in turn lead to errors when predicting
distribution in other geographic areas. However, cli-
mate matching may be the only practical choice given
a lack of adequate data to perform other assessments
(Baker et al. 2000, Logan et al. 2003). Were they to
become available, speciÞc location data on the occur-
rence of X. glabratus within its native range, rather
than entire countries or regions, would allow us to

reÞneourestimatesof thebeetleÕs extent in theUnited
States, as might any laboratory experiments on critical
climatic thresholds for X. glabratus or the laurel wilt
fungus. We are also currently examining how more
detailed location data regarding native host species
distributions might help to reÞne our estimates.

Despite its limitations, our climate match analysis
provides evidence thatX. glabratusmay essentially be
constrained to the southeastern U.S. coastal plain and
is unlikely to spread deep into eastern U.S. interior
forests. This departs from historical examples of other
Asian xyleborine species that have been present in the
United States for at least 15 yr (e.g., Xyleborus atratus
Eichhoff, Xylosandrus germanus Blandford) and that
now have broad geographic distributions spanning
much of the eastern United States (Rabaglia et al.
2006). A more recently introduced Asian species, Xy-
losandrus mutilatus Blandford, which has so far been
found in Mississippi, Florida, and Texas, has also been
predicted to eventually extend across much of the
eastern United States (Schiefer and Bright 2004, Raba-
glia et al. 2006). Nonetheless, it is important to note
that all of these species have much broader native
geographic ranges than X. glabratus, which seems to
be limited to subtropical or warm temperate parts of
eastern Asia (Holistic Insect Systematics Laboratory
2004, Schiefer and Bright 2004).

The restricted extent predicted for X. glabratus
principally derives from the minimum monthly rain-
fall values recorded from the beetleÕs native range

Fig. 6. Predicted extent ofX. glabratus spread in the eastern United States through time, based on cost-weighted distance
modeling from three points of origin, and overlaid on a map of host density.
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(Table 1). Particularly during late summer months,
most of the conterminous United States receives less
rainfall than the smallest amount of rainfall recorded
in any part of the native range of X. glabratus. This is
critical because fungal symbionts of ambrosia beetles
generally have exacting moisture requirements: If
there is too much moisture, adult beetles and larvae
will drown in an overabundance of fungi, whereas too
little moisture will kill the fungi, leaving no food
source (Furniss and Carolin 1977). No part of the
conterminous United States receives monthly rainfall
amounts close to the maximum values recorded from
the beetleÕs native range in Asia, so an overabundance
of fungus seemsunlikely.However, a casecanbemade
that only the southeastern U.S. coastal plain has suf-
Þcient rainfall across the months of the growing season
to sustain the beetleÕs fungal symbiont.
Spread Modeling. Our cost-based modeling ap-

proach allowed us to make reasonable spread projec-
tions despite scant information regarding the popula-
tion dynamics of X. glabratus or its associated fungus.
It is also a departure from most invasion models that
assume resource (e.g., host) availability does not af-
fect dispersal (Dwyer and Morris 2006). Our approach
does have a few shortcomings. First, our assumption of
simple radial diffusion does not address possible host-
independent variability in rates of spread between
different areas. For example, with respect to the initial
infestation zone near the Georgia-South Carolina bor-
der, it appears from Fig. 1 that X. glabratus has spread
more rapidly into northern Georgia than into southern
South Carolina, despite similar levels of redbay in both
areas. Although southern Georgia may have been im-
pacted by dispersal of X. glabratus from recent infes-
tations in Florida, this seems an inadequate explana-
tion of the beetleÕs rapid spread in northern Georgia
during the past few years. Actually, the discrepancy
between Georgia and South Carolina may be some-
what artiÞcial, because X. glabratus invasion is recent
(i.e., only limited data available), and there may be a
time lag between when a county is actually infested
and when infestation is detected and conÞrmed, not to
mention that this discrepancy was observed from
coarse, county-level infestation data. Beyond our lim-
iting assumption of radial diffusion, because our ap-
proach does not include population parameters, we
are unable to model Allee effects or other population-
related phenomena that alter the speed of invasions
through both space and time (Tobin et al. 2007b). Our
model also does not account for certain anthropogenic
effects that can change the course of an invasion
through time (Liebhold et al. 1992), most obviously
the possibility of accidental long-distance dispersal,
which has almost certainly occurred withX. glabratus.
In view of this particular limitation, our model should
be seen as the most current estimate of the main front
of the X. glabratus invasion, while recognizing that
isolated infestations may exist, undetected, in loca-
tions beyond this main front. Incorporating a means to
predict long-distance dispersal events in our model
would make it more realistic, as would including pop-
ulation parameters, both of which we hope to do as

additional data on the pestÕs biology and behavior
become available.

It is also worth noting that we estimated the mean
rate of spread for X. glabratus from just the Þrst 3 yr
of infestation data. Although the 2007 data were in-
complete at the time of our analysis, it initially seems
that fewer counties were infested in 2007 than in each
of the 3 previous yr. This may indicate that the rate of
spread is declining through time, emphasizing that our
spread prediction should only be interpreted as pre-
liminary and subject to change as we incorporate
additional data.
Evaluating the Overall Threat. Potential ecological

and economic impacts are pertinent to assessment of
the riskX. glabratusposes to the eastern United States.
The susceptibility of two endangered shrubs, pond-
berry and pondspice, to the laurel wilt fungus has
already been noted. Neither redbay or sassafras is
typically a forest dominant, although redbay is quite
common in barrier island forests of the southeastern
United States, where it can be one of the most densely
growing understory species (Helm et al. 1991). Red-
bay and sassafras are important food sources for wild-
life, particularly in providing winter forage (Griggs
1990, Coder 2006a). Two butterßies, the spicebush
swallowtail (Papilio troilus L.) and the Palamedes
swallowtail (P. palamedesDrury), use Lauraceae spe-
cies as hosts. Although P. palamedes larvae may feed
on redbay or sassafras, adult females strongly prefer to
oviposit on redbay, perhaps because of greater pre-
dation pressure on sassafras (Lederhouse et al. 1992).
A removal of their preferred host could be cata-
strophic because, in addition to this possible predation
pressure, sassafras density may be inadequate to sup-
portpopulationsofP.palamedes in their current range.

Because neither redbay nor sassafras is commer-
cially signiÞcant, the greatest potential economic im-
pact may come if X. glabratus invades the avocado-
growing region of south Florida. Although limited in
scope (2,935 ha in cultivation), the Florida avocado
industry is relatively lucrative; the 2004Ð2005 harvest
had an estimated value of $14.45 million (Evans and
Nalampang 2006). Nearly 99% of the stateÕs avocado
orchards are found in the Miami-Dade County area
(USDA National Agricultural Statistics Service 2004).
Our spread model projects that X. glabratus could
reach this area by 2018, but the actual impact of the
beetleÕs arrival is uncertain, because there is labora-
tory evidence that avocado may be more resistant to
the laurel wilt fungus than other potential hosts
(USDA Forest Service 2007b).

What are the prospects for minimizing these im-
pacts? Our analysis suggests that X. glabratus and the
laurel wilt fungus could expand throughout the south-
eastern U.S. coastal plain with particular speed during
the next several years as host density remains high.
The climate match map (Fig. 4) does seem to suggest
that the far western extent of redbay is not particularly
suitable for the beetle, but this interpretation should
be viewed circumspectly given the rudimentary na-
ture of the climate match analysis. It is possible thatX.
glabratus will expand into interior forests of the east-
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ern United States, but this seems unlikely given the
lack of evidence that the beetle will infest sassafras in
the absence of redbay, as well as the apparent climatic
constraints. With respect to management, fungicide
trials to protect individual trees are ongoing (USDA
Forest Service 2007b), but chemical control is prob-
ably impractical for natural forest stands. Little prior
research exists regarding biological control of xylebo-
rine species (Rabaglia 2003), so whereas that may be
an eventual possibility, it is doubtful that a systematic
control program could be in place before X. glabratus
spreads to much of the range of redbay or to the
avocado-growing region of Florida unless the beetleÕs
spread is slowed signiÞcantly. Development of resis-
tant hosts can be expected to have a similarly long
timeframe. Sanitation (i.e., removal of infected hosts)
could help to slow the spread of X. glabratusÑand
grant more time to research these other optionsÑif
targeted and timed appropriately (USDA Forest Ser-
vice 2007b). Our analysis offers a basic framework for
monitoring X. glabratus and planning such sanitation
procedures. Ultimately, a key method to slow the
spread of X. glabratus is to disrupt accidental anthro-
pogenic dispersal, which seems to have moved the
beetle long distances on at least a couple of occasions
(USDA Forest Service 2007b). Efforts to promote
public awareness, when coupled with research and
technology transfer, have helped to slow the spread of
some forest insect pests in the past (Hain 2006), so pest
alerts and outreach publications for X. glabratus
(Coder 2006b, MayÞeld and Thomas 2006) are impor-
tant in this regard. As a complement, data from our
analysis could be used in conjunction with additional
GIS data (e.g., on transportation networks) to target
those areas where disruption of human-mediated dis-
persal pathways would likely be most effective.

Acknowledgments

We thank L. Reid (South Carolina Forestry Commission),
A. MayÞeld (Florida Department of Agriculture and Con-
sumer Services, Division of Forestry), J. Johnson (Georgia
Forestry Commission), S. Fraedrich (USDA Forest Service),
and D. Duerr (USDA Forest Service) for providing back-
ground information and key data sets. This research was
supported in part through Research Joint Venture Agree-
ment 06-JV-11330146-123 between the U.S. Department of
Agriculture, Forest Service, Southern Research Station,
Asheville, NC, and North Carolina State University.

References Cited

Adriaensen, F., J. P. Chardon, G. D. Blust, E. Swinnen, S.
Villalba, H. Gulinck, and E. Matthysen. 2003. The ap-
plication of Ôleast-costÕ modelling as a functional land-
scape model. Landscape Urban Plan. 64: 233Ð247.

Akin, W. E. 1991. Global patterns: climate, vegetation, and
soils. University of Oklahoma Press, Norman, OK.

Atkinson, T. H., R. J. Rabaglia, and D. E. Bright. 1990.
Newly detected exotic species of Xyleborus (Coleoptera:
Scolytidae) with a revised key to species in eastern North
America. Can. Entomol. 122: 93Ð104.

Baker, R.H.A., C. E. Sansford, C. H. Jarvis, R.J.C. Cannon, A.
MacLeod, andK.F.A.Walters. 2000. The role of climatic

mapping in predicting the potential geographical distri-
bution of non-indigenous pests under current and future
climates. Agr. Ecosyst. Environ. 82: 57Ð71.

Banks, R. B. 1994. Growth and diffusion phenomena: math-
ematical frameworks and applications. Springer, Berlin,
Germany.

Beaver, R. A. 1979. Host speciÞcity of temperate and trop-
ical animals. Nature (Lond.) 281: 139Ð141.

Coder, K. D. 2006a. Identifying characteristics of redbay
(Persea borbonia). Outreach publication SFNR06Ð4.
Warnell School of Forestry and Natural Resources, Uni-
versity of Georgia, Athens, GA.

Coder, K. D. 2006b. Stress, pests, and injury in redbay (Per-
sea borbonia). Outreach publication SFNR06Ð5. Warnell
School of Forestry and Natural Resources, University of
Georgia, Athens, GA.

Coulston, J.W., K.H. Riitters, R. E.McRoberts, G. A. Reams,
and W. D. Smith. 2006. True versus perturbed forest
inventory plot locations for modeling: a simulation study.
Can. J. For. Res. 36: 801Ð807.

Cressie, N.A.C. 1993. Statistics for spatial data. Wiley, New
York.

Dedecker, A. P., K. VanMelckebeke, P.L.M.Goethals, andN.
De Pauw. 2007. Development of migration models for
macroinvertebrates in the Zwalm river basin (Flanders,
Belgium) as tools for restoration management. Ecol.
Model. 203: 72Ð86.

Dwyer, G., and W. F. Morris. 2006. Resource-dependent
dispersal and the speed of biological invasions. Am. Nat.
167: 165Ð176.

Environmental Systems Research Institute. 2002. Using
ArcGIS Spatial Analyst. Environmental Systems Research
Institute, Redlands, CA.

Environmental Systems Research Institute. 2003. Using
ArcGIS Geostatistical Analyst. Environmental Systems
Research Institute, Redlands, CA.

Evans, E., and S. Nalampang. 2006. World, U.S. and Florida
avocado situation and outlook. Food and Resource Eco-
nomics Department, Florida Cooperative Extension Ser-
vice, Institute of Food and Agricultural Sciences, Uni-
versity of Florida, Gainesville, FL.

Fraedrich, S. W., T. C. Harrington, and R. J. Rabaglia. 2007.
Laurel wilt: a new and devastating disease of redbay
caused by a fungal symbiont of the exotic redbay ambro-
sia beetle. Newslett. Mich. Entomol. Soc. 52: 15Ð16.

Furniss, R. L., and V. M. Carolin. 1977. Western forest in-
sects. U.S. Department of Agriculture, Forest Service,
Washington, DC.

Global Biodiversity Information Facility. 2007. GBIF data
portal (http://data.gbif.org/welcome.htm).

Griggs, M. M. 1990. Sassafras albidum (Nutt.) NeesÑsassa-
fras, pp. 773Ð777. InR. M. Burns and B. H. Honkala (eds.),
Silvics of North America. U.S. Department of Agriculture,
Forest Service, Washington, DC.

Haack, R. A. 2001. Intercepted Scolytidae (Coleoptera) at
U.S. ports of entry: 1985Ð2000. Integrat. Pest Manage. Rev.
6: 253Ð282.

Haack, R. A. 2006. Exotic bark- and wood-boring Co-
leoptera in the United States: recent establishments and
interceptions. Can. J. For. Res. 36: 269Ð288.

Haefner, J. W. 2005. Modeling biological systems. Springer
Science�Business Media, New York.

Hain, F. 2006. New threats to forest health require quick
and comprehensive research response. J. Forest. 104: 182Ð
186.

Helm, A. C., N. S. Nicholas, S. M. Zedaker, and S. T. Young.
1991. Maritime forests on Bull Island, Cape Romain,
South Carolina. B. Torrey Bot. Club. 118: 170Ð175.

April 2008 KOCH AND SMITH: SPATIO-TEMPORAL ANALYSIS OF X. glabratus 451



Hengeveld, R. 1989. Dynamics of biological invasions.
Chapman & Hall, London, UK.

Holistic Insect Systematics Laboratory. 2004. Xyleborini tax-
onomy and literature online database (http://xyleborini.
tamu.edu/db_intro.php).

Kinuura, H., and M. Kobayashi. 2006. Death of Quercus
crispula by inoculation with adult Platypus quercivorus
(Coleoptera: Platypodidae). Appl. Entomol. Zool. 41:
123Ð128.

Kubono, T., and S. Ito. 2002. Raffaelea quercivora sp. nov.
associated with mass mortality of Japanese oak, and the
ambrosia beetle (Platypus quercivorus). Mycoscience 43:
255Ð260.
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