Avocado Pollination – by Honeybees or by Wind?

Gad Ish-Am
Tzafon Agricultural R & D, and
Ohalo College, Katzrin, Israel

Emi Lahav
Acco Regional Experiment Station, Israel
A major question remains re avocado pollination:

What is the relative contribution of wind vs. honeybees (and other insects)?
Or: is it necessary to introduce honeybee hives into avocado orchards to ensure pollination?

Davenport (2003 and more): Wind is the major avocado pollination agent in Florida.

Ying, Davenport *et al.* (2009): Wind, and not honeybees, is the main avocado pollinator also in California.
The purpose of this study was:

to determine the relative importance of honeybee activity and wind in the pollination of avocado trees under a Mediterranean climate.
Methods (1)

Location
Avocado orchard, Western Galilee, Israel

Cultivars and trees
Five cultivars: Hass, Reed (flower group A)
Ettinger, Fuerte, Nabal (flower group B)
Five trees in full bloom (next to a pollenizer tree) for each cultivar, per season.

Observation seasons and days
Seven seasons: 1982 - 1984, 1989 - 1992,
Nine days per season.

Meteorology data
Two stations: inside the orchard, and in an open field next to the orchard.
Methods (2)

Temperatures
Daily max, min and average.

Wind velocity
Measuring every 30 min, from 08:00 to 18:00. Recording daily max and average.

Honeybee density
Number of bees per tree, counts every 30 min during the day, for each tree. Recording daily “Max bee density” for each cv.

Flower stages
Recording open flower stages every 30 min for each tree.

Rates of pollination
Sampling 50 styles per cultivar every 60 min. Checking “Percent pollination” under a light microscope. Recording daily “max percent pollination” per cv.
Methods (3)

Simulation of wind effect

‘Hass’ & ‘Fuerte’ male flowers were subjected to changing wind velocities under lab condition. Pollen drift was recorded using a stereoscope.

Statistical analysis

1. Data from the 7 years were pooled.
2. Daily “Max percent pollination” of the 5 cultivars was pooled and analyzed vs:
 - Daily “max bee density”
 - Wind velocity (daily max or average)
 - Temperature (daily max or average)
 - Cultivar
3. “Max percent pollination” of each cultivar was also analyzed against “Max bee density” and wind velocity.
Wind velocity in the field
Maximum wind velocity (61 observation days):
Open field - 9.7 m/sec; Inside the orchard - 4.5 m/sec.

Simulation of wind effect
Wind velocity of up to 10 m/sec
No pollen dispersal from the male flowers.

Wind velocity of 10 to 14 m/sec
Few pollen dispersed from the male flowers.

Wind velocity of 14 to 16 m/sec
Pollen dispersal from all male flowers.

High wind velocities caused pollen dispersal mainly in clusters.

Anther of ‘Hass’ male flower
Results (2)

Effects on “Percent pollination” of the 5 cultivars
“Honeybee density” – high significant positive effect ($P < 0.0001$).
“Wind velocity” – no effect, neither of max, nor of average velocity.
“Average daily temperature” – positive effect ($P = 0.020$).
“Cultivar” – significant effect ($P = 0.012$).

Effects on “Percent pollination” of each cultivar

Honeybee density: significant positive effects.

Wind velocity: neither daily max, nor average wind velocities had any effect.

‘Hass’ female flower pollinated stigma
Results (3)

“Percent pollination” of ‘Hass’ is affected by:

“Honeybee density” – a high significant positive effect ($P < 0.0001$).
“Wind velocity” – no effect ($P = 0.10$).

‘Hass’ percent pollination vs. honeybee density and wind velocity
Discussion

the avocado flower - a typical insect pollinated flower
- Nectar secretion by both gender flowers.
- Small stigma and small amount of pollen.
- Flowers are colorful and have scent.
- Large, sticky pollen grains.
The avocado pollen grains are large and sticky.
Experiments of pollination under net

Flowering tree under net, with no bees: no fruits, or very few fruits (1-3% of un-caged trees).

Flowering tree + pollenizer tree under net, with no bees: few additional fruits (4-6% of un-caged trees).

Flowering tree under net, with bees: numerous fruits.

Sources: numerous works from California, Israel, South Africa, and Yucatán.

Flowering tree under net, with bees + pollenizer next to net: numerous fruits, of which only 7% (3-14%) are cross.

Source: Degani et al., 2003
Measurements of avocado air-borne pollen

Very low quantities, mostly as clusters. 'Ettinger' pollen floats up to 25 m.

Source: Katz, 1995

No correlation between wind velocity and air-borne avocado pollen amounts.

Air-borne pollination rates in caged trees:
- 2.5%-4.7% in trees next to a pollenizer tree.
- 0.6% pollination in a secluded 'Ettinger' tree.
‘Hass’ flowering, honeybee activity and fruit set – Israel, spring 1992

No fruit-set during ‘Hass’ peak bloom, while honeybee activity was very low.

High fruit-set began when the bees visited the trees, at the end of bloom.

Source: Ish-Am and Eisikowitch, 1998
Honeybees transfer the pollen

Avocado pollen carried on a honeybee’s body

Head of a honeybee

Avocado pollen

Brassicaceae pollen

Source: Ish-Am and Eisikowitch, 1993
Pollen and stigma touch same locations

Male flower

Forehead transfer

Female flower

Ventral-thorax transfer
Honeybees are efficient pollinators, but...

Vithanage (South-West Australia, 1990):
Honeybees are the most available efficient avocado pollinator. Two beehives/hectare increased yield (3.5-fold), comparing to no hives. Three beehives/hectare further increased productivity by 20% to 38%.

Ish Am et al. (Israel, 2000):
Adding bumblebee hives increased yield, and mainly increased cross-yield in trees that are distant from pollenizer.

Ish Am & Gazit (Mexico, 2002):
Eight local Meliponinae species are more efficient pollinators than honeybees.
Conclusion: the need for numerous honeybees. Average pollination rates are affected by:

- **Number of bees per tree:** Twenty may be sufficient.
- **Pollenizer distance:** Near pollenizer induces better cross-pollination.
- **Pollination type:** Close-pollination rate is mostly higher than cross-pollination.
- **Flowering group:** "Group A" cultivars get higher close-pollination rate.

Source: Ish-Am and Eisikowitch, 1998
Conclusion: our work, plus other works, invalidate the claims of Davenport and his colleagues.

Recommendation: monitoring honeybee activity, and adjusting honeybee-hive density accordingly:

<table>
<thead>
<tr>
<th>Bees per tree</th>
<th>Close-fruit set</th>
<th>Cross-fruit set</th>
<th>Adding hives</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>none</td>
<td>none</td>
<td>necessary</td>
</tr>
<tr>
<td>1-4</td>
<td>Very few</td>
<td>none</td>
<td>necessary</td>
</tr>
<tr>
<td>5-9</td>
<td>few</td>
<td>none</td>
<td>necessary</td>
</tr>
<tr>
<td>10-25</td>
<td>many</td>
<td>few on the 1st row</td>
<td>recommended</td>
</tr>
<tr>
<td>26-55</td>
<td>many</td>
<td>on 1st and 2nd rows</td>
<td>may be helpful</td>
</tr>
<tr>
<td>More than 55</td>
<td>many</td>
<td>up to the 4th row</td>
<td>not needed</td>
</tr>
</tbody>
</table>

Source: Ish-Am, 2005
Thank you...